Bio-based Chemistry Research Center, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Ulsan 44429, Republic of Korea.
School of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 680-749, Republic of Korea.
J Agric Food Chem. 2020 Nov 4;68(44):12336-12344. doi: 10.1021/acs.jafc.0c04246. Epub 2020 Oct 26.
This is the first study on improving lactobionic acid (LBA) production capacity in by genetic engineering. First, quinoprotein glucose dehydrogenase (GDH) was identified as the lactose-oxidizing enzyme of . Of the two types of GDH genes in , membrane-bound (GDH1) and soluble (GDH2), only GDH1 showed lactose-oxidizing activity. Next, the genetic tool system for was developed based on the pDSK519 plasmid for the first time, and GDH1 gene was homologously expressed in . Recombinant expression of the GDH1 gene enhanced intracellular lactose-oxidizing activity and LBA production of in flask culture. In batch fermentation of the recombinant using a 5 L bioreactor, the LBA productivity of the recombinant was approximately 17% higher (8.70 g/(L h)) than that of the wild type (7.41 g/(L h)). The LBA productivity in this study is the highest ever reported using bacteria as production strains for LBA.
这是首次通过基因工程提高乳果糖(LBA)在 中的生产能力的研究。首先,醌蛋白葡萄糖脱氢酶(GDH)被鉴定为 的乳糖氧化酶。 在 中的两种 GDH 基因(膜结合型(GDH1)和可溶性型(GDH2)中,只有 GDH1 显示出乳糖氧化活性。接下来,首次基于 pDSK519 质粒为 开发了遗传工具系统,并在 中同源表达了 GDH1 基因。GDH1 基因的重组表达增强了 细胞内的乳糖氧化活性和 LBA 产量。在 5 L 生物反应器的重组 分批发酵中,重组 的 LBA 生产力比野生型(7.41 g/(L h))高约 17%(8.70 g/(L h))。本研究中的 LBA 生产力是迄今为止使用细菌作为 LBA 生产菌株报告的最高生产力。