Department of Civil Engineering, National Institute of Technology Patna, Patna, 800 005, India.
AgFE Department, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, India.
Environ Monit Assess. 2020 Oct 26;192(11):729. doi: 10.1007/s10661-020-08687-3.
This paper examines the performance of three gridded precipitation data sets, namely, Global Precipitation Climatology Centre (GPCC), Tropical Precipitation Measuring Mission (TRMM), and the Modern-Era Retrospective Analysis for Research and Applications (MERRA), for the duration of 25 years using 9 rain gauge data sets of the Sina basin, India. Statistical measures were employed to measure the performance in reproducing the rainfall and to assess its ability to detect the rainfall/no rainfall events, its structure, pattern, and spatio-temporal variations in the monthly and annual time scales. Compromise programming (CP) is used to rank the statistical performances of selected gridded precipitation data sets and found that TRMM attained first rank for the 8 stations followed by MERRA. The precipitation concentration index (PCI) checks the pattern and distribution of rainfall and found that observed data shows a uniform distribution in the basin; however, all the three gridded data sets failed to demonstrate uniform distribution. Categorical metrics like Probability of Detection (POD) and False Alarm Ratio (FAR) revealed that TRMM followed by MERRA and GPCC have good capabilities to detect rainfall/no rainfall events at different thresholds. All the trends drawn between observed data set and gridded precipitation data sets revealed that the MERRA data tend to underestimate and the TRMM and GPCC data tend to overestimate the values and intensities of rainfall data sets at most of the stations for both monthly and annual time scales. The data analysis of extreme rainfall points at monthly and annual time scales exhibits better performance of TRMM data sets. Overall, the TRMM data set is capable in replicating different characteristics of the observed data in the study area and could be used for hydro-meteorological and climatic studies when continuous observed data set is not available.
本文利用印度锡纳流域的 9 个雨量计数据集,在 25 年的时间内,对三种网格化降水数据集(全球降水气候中心(GPCC)、热带降水测量任务(TRMM)和现代回顾分析研究与应用(MERRA))的性能进行了检验。统计措施被用来衡量复制降雨量的性能,并评估其检测降雨/无雨事件的能力、其结构、模式以及在月和年时间尺度上的时空变化。折衷规划(CP)用于对选定的网格化降水数据集的统计性能进行排名,结果表明,TRMM 在 8 个站点中排名第一,其次是 MERRA。降水集中指数(PCI)检查降雨的模式和分布,发现观测数据在流域中呈现均匀分布;然而,所有三种网格化数据都未能显示出均匀的分布。分类指标,如探测概率(POD)和误报率(FAR)表明,TRMM 紧随其后的是 MERRA 和 GPCC,它们具有在不同阈值下检测降雨/无雨事件的良好能力。在观测数据集和网格化降水数据集之间绘制的所有趋势表明,MERRA 数据往往低估,而 TRMM 和 GPCC 数据往往高估了大多数站点的月和年时间尺度上的降雨数据集的值和强度。月和年时间尺度上极端降雨点的数据分析显示,TRMM 数据集的性能更好。总的来说,TRMM 数据集能够复制研究区域观测数据的不同特征,当没有连续的观测数据集时,可用于水文气象和气候研究。