Nuño Michelle M, Gillen Daniel L
Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA.
Children's Oncology Group in Monrovia, CA.
Stat Med. 2021 Jan 30;40(2):299-311. doi: 10.1002/sim.8775. Epub 2020 Oct 26.
The Cox proportional hazards model is typically used to analyze time-to-event data. If the event of interest is rare and covariates are difficult or expensive to collect, the nested case-control (NCC) design provides consistent estimates at reduced costs with minimal impact on precision if the model is specified correctly. If our scientific goal is to conduct inference regarding an association of interest, it is essential that we specify the model a priori to avoid multiple testing bias. We cannot, however, be certain that all assumptions will be satisfied so it is important to consider robustness of the NCC design under model misspecification. In this manuscript, we show that in finite sample settings where the functional form of a covariate of interest is misspecified, the estimates resulting from the partial likelihood estimator under the NCC design depend on the number of controls sampled at each event time. To account for this dependency, we propose an estimator that recovers the results obtained using using the full cohort, where full covariate information is available for all study participants. We present the utility of our estimator using simulation studies and show the theoretical properties. We end by applying our estimator to motivating data from the Alzheimer's Disease Neuroimaging Initiative.
Cox比例风险模型通常用于分析事件发生时间数据。如果感兴趣的事件罕见,且协变量难以收集或收集成本高昂,那么嵌套病例对照(NCC)设计能够以较低成本提供一致的估计,前提是模型设定正确,且对精度的影响最小。如果我们的科学目标是对感兴趣的关联进行推断,那么事先设定模型以避免多重检验偏差至关重要。然而,我们无法确定所有假设都能得到满足,因此考虑NCC设计在模型设定错误情况下的稳健性很重要。在本手稿中,我们表明,在有限样本情况下,如果感兴趣的协变量的函数形式设定错误,NCC设计下部分似然估计器得出的估计值取决于每个事件时间抽样的对照数量。为了考虑这种依赖性,我们提出了一种估计器,该估计器能够恢复使用完整队列获得的结果,完整队列中所有研究参与者都可获得完整的协变量信息。我们通过模拟研究展示了我们的估计器的效用,并展示了其理论性质。最后,我们将我们的估计器应用于阿尔茨海默病神经影像倡议的激励数据。