Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA.
Biostatistics. 2010 Oct;11(4):693-706. doi: 10.1093/biostatistics/kxq037. Epub 2010 Jun 3.
The nested case-control (NCC) design is a cost-effective sampling method to study the relationship between a disease and its risk factors in epidemiologic studies. NCC data are commonly analyzed using Thomas' partial likelihood approach under Cox's proportional hazards model with constant covariate effects. Here, we are interested in studying the potential time-varying effects of covariates in NCC studies and propose an estimation approach based on a kernel-weighted Thomas' partial likelihood. We establish asymptotic properties of the proposed estimator, propose a numerical approach to construct simultaneous confidence bands for time-varying coefficients, and develop a hypothesis testing procedure to detect time-varying coefficients. The proposed inference procedure is evaluated in simulations and applied to an NCC study of breast cancer in the New York University Women's Health Study.
巢式病例对照(NCC)设计是一种经济有效的抽样方法,可用于在流行病学研究中研究疾病与其危险因素之间的关系。NCC 数据通常使用 Cox 比例风险模型下的 Thomas 部分似然法进行分析,其中协变量效应恒定。在这里,我们有兴趣研究 NCC 研究中协变量的潜在时变效应,并提出一种基于核加权 Thomas 部分似然的估计方法。我们建立了所提出估计量的渐近性质,提出了一种构建时变系数的同时置信带的数值方法,并开发了一种用于检测时变系数的假设检验程序。所提出的推断程序在模拟中进行了评估,并应用于纽约大学妇女健康研究中的乳腺癌 NCC 研究。