Suppr超能文献

氧化锌纳米催化剂促进通过氨基酸的四组分反应生产咪唑衍生物:抗氧化和抗菌活性研究。

ZnO-nanocatalyst Promoted the Production of Imidazole Derivatives via four-component Reaction of Aminoacid: Study of Antioxidant and Antimicrobial Activity.

机构信息

Department of Chemistry, Payame Noor University, P. O Box: 3971189451, Tehran, Iran.

Department of Chemistry, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran.

出版信息

Comb Chem High Throughput Screen. 2021;24(6):841-848. doi: 10.2174/1386207323999200820163129.

Abstract

AIM AND OBJECTIVE

In current research, imidazole derivatives are synthesized via a new process of four component reaction of trichloroacetonitrile, amides, alkyl bromides and amino acids catalyzed by zinc oxide nanoparticles (ZnO-NPs) as a simple and recyclable catalyst in water at room temperature. Among investigated compounds, compounds 5b have good results relative to butylated hydroxytoluene (BHT) and 2-tert-butylhydroquinone (TBHQ) as standard antioxidant. The achieved outcomes of disk diffusion experiment showed that these compounds avoided the growth of bacterial.

MATERIALS AND METHODS

In this research, all chemicals are purchased from Fluka (Buchs, Switzerland) and employed with any purification. For measuring infrared spectroscopy and melting point, a Shimadzu IR-460 spectrometer and Electrothermal 9100 apparatus are utilized respectively. BRUKER DRX-400 AVANCE spectrometer is used for giving the 1H, and 13CNMR spectra at 400.1 and 100 MHz respectively. For recording mass spectra, A FINNIGAN-MAT 8430 spectrometer with an ionization potential of 70 eV was utilized. The scanning electron microscopy (SEM) employing a Holland Philips XL30 microscope was used for determination of ZnO nanocomposites morphology. X-ray diffraction (XRD) analysis at room temperature using a Holland Philips Xpert X-ray powder diffractometer, with CuKα radiation (λ=0.15406 nm), with 2θ ranging from 20 to 80° was employed for characterization of crystalline structure of Fe3O4/CuO nanocomposites. Scherrer's formula; D= 0.9λ/β cosθ was employed for calculating the average crystallite size where D is the diameter of the nanoparticles, λ (CuKα) =1.5406 Å and β is the fullwidth at half-maximum of the diffraction lines. A general way to prepare of compounds 5 The trichloroacetonitrile 1 (2 mmol) and amides 2 (2 mmol) mixed with ZnO-NPs (10 mol%) in water (5 mL). after 45 min amino acids 3 (2 mmol) was added to previous mixture at room temperature. After 30 min α-haloketones 4 (2 mmol) was added to mixture and stirred for 3 h. After 3 h, the reaction is completed and TLC confirms progress of the reaction. At last, the solid residue was collected by filtration and cleaned with EtOAC to removing ZnO-NPs and after evaporating solvent and washing solid with Et2O compounds 5 afforded as pure product.

RESULTS

Without employing catalyst, these reactions have low yield and busy mixture. The synthesis of compound 5a as sample reaction and displayed the ZnO nanoparticles (10 mol%) is the best catalyst for sample reaction and H2O is the very better than other solvent in sample raection. Structures of 5 are confirmed by IR, 1H NMR, 13C NMR mass spectra.

CONCLUSION

In summary, imdazole derivatives were produced in excellent yield from the reaction of trichloroacetonitrile, amides, alkyl bromides and amino acids using ZnO-NPs in water at room temperature. In addition, the power of synthesized imidazole as antioxidant was determined by radical trapping of DPPH and power of reducing ferric analyzes. The tested imidazoles display good radical trapping of DPPH but exhibitted moderate FRAP relative to BHT and TBHQ as synthetic antioxidants.The outcomes of disk diffusion experiment exhibite that synthesized imidazole avoided the bacterial growth. The superiorities of this procedure are environmental, high yield of product and low amounts of catalyst and short time of reaction.

摘要

目的和目标

在当前的研究中,通过四组分反应合成了咪唑衍生物,该反应使用三氯乙腈、酰胺、烷基溴化物和氨基酸作为催化剂,在室温下在水中进行,氧化锌纳米粒子(ZnO-NPs)作为一种简单且可回收的催化剂。在所研究的化合物中,化合物 5b 相对于丁基化羟基甲苯(BHT)和 2-叔丁基对苯二酚(TBHQ)作为标准抗氧化剂具有良好的效果。圆盘扩散实验的结果表明,这些化合物可以阻止细菌的生长。

材料和方法

在这项研究中,所有的化学物质均购自 Fluka(瑞士 Buchs),并进行了任何必要的纯化。使用 Shimadzu IR-460 光谱仪和 Electrothermal 9100 仪器分别测量红外光谱和熔点。使用 BRUKER DRX-400 AVANCE 光谱仪在 400.1 和 100 MHz 下分别给出 1H 和 13CNMR 谱。使用具有 70 eV 电离势的 A FINNIGAN-MAT 8430 光谱仪记录质谱。采用荷兰飞利浦 XL30 显微镜进行扫描电子显微镜(SEM),用于测定 ZnO 纳米复合材料的形态。采用荷兰飞利浦 Xpert X 射线粉末衍射仪在室温下进行 X 射线衍射(XRD)分析,采用 CuKα 辐射(λ=0.15406nm),2θ 范围为 20-80°,用于表征 Fe3O4/CuO 纳米复合材料的晶体结构。采用 Scherrer 公式;D=0.9λ/β cosθ 计算平均晶粒尺寸,其中 D 是纳米粒子的直径,λ(CuKα)=1.5406Å,β 是衍射线的半峰全宽。通常的化合物 5 的制备方法是将三氯乙腈 1(2mmol)和酰胺 2(2mmol)与 ZnO-NPs(10mol%)混合在水中(5mL)。45 分钟后,在室温下向混合物中加入氨基酸 3(2mmol)。30 分钟后,向混合物中加入α-卤代酮 4(2mmol)并搅拌 3 小时。3 小时后,反应完成,TLC 确认反应进行。最后,通过过滤收集固体残留物,用 EtOAC 去除 ZnO-NPs,然后蒸发溶剂并将固体用 Et2O 洗涤,得到纯产物 5。

结果

在没有催化剂的情况下,这些反应产率低,混合物复杂。以化合物 5a 作为样品反应,显示 ZnO 纳米粒子(10mol%)是最佳催化剂,H2O 是最佳溶剂。5 的结构通过 IR、1H NMR、13C NMR 质谱确认。

结论

总之,在室温下,使用 ZnO-NPs 在水中从三氯乙腈、酰胺、烷基溴化物和氨基酸的反应中以优异的产率生成了咪唑衍生物。此外,通过 DPPH 自由基捕获和铁分析还原能力来确定合成咪唑作为抗氧化剂的能力。测试的咪唑对 DPPH 自由基具有良好的捕获能力,但相对于 BHT 和 TBHQ 等合成抗氧化剂,其 FRAP 能力中等。圆盘扩散实验的结果表明,合成的咪唑可以阻止细菌的生长。该方法的优点是环境友好、产物产率高、催化剂用量少、反应时间短。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验