Suppr超能文献

HiCHap:一个用于校正和分析二倍体Hi-C数据的软件包。

HiCHap: a package to correct and analyze the diploid Hi-C data.

作者信息

Luo Han, Li Xinxin, Fu Haitao, Peng Cheng

机构信息

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.

Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China.

出版信息

BMC Genomics. 2020 Oct 27;21(1):746. doi: 10.1186/s12864-020-07165-x.

Abstract

BACKGROUND

In diploid cells, it is important to construct maternal and paternal Hi-C contact maps respectively since the two homologous chromosomes can differ in chromatin three-dimensional (3D) organization. Though previous softwares could construct diploid (maternal and paternal) Hi-C contact maps by using phased genetic variants, they all neglected the systematic biases in diploid Hi-C contact maps caused by variable genetic variant density in the genome. In addition, few of softwares provided quantitative analyses on allele-specific chromatin 3D organization, including compartment, topological domain and chromatin loop.

RESULTS

In this work, we revealed the feature of allele-assignment bias caused by the variable genetic variant density, and then proposed a novel strategy to correct the systematic biases in diploid Hi-C contact maps. Based on the bias correction, we developed an integrated tool, called HiCHap, to perform read mapping, contact map construction, whole-genome identification of compartments, topological domains and chromatin loops, and allele-specific testing for diploid Hi-C data. Our results show that the correction on allele-assignment bias in HiCHap does significantly improve the quality of diploid Hi-C contact maps, which subsequently facilitates the whole-genome identification of diploid chromatin 3D organization, including compartments, topological domains and chromatin loops. Finally, HiCHap also supports the data analysis for haploid Hi-C maps without distinguishing two homologous chromosomes.

CONCLUSIONS

We provided an integrated package HiCHap to perform the data processing, bias correction and structural analysis for diploid Hi-C data. The source code and tutorial of software HiCHap are freely available at https://pypi.org/project/HiCHap/ .

摘要

背景

在二倍体细胞中,分别构建母本和父本的Hi-C接触图谱很重要,因为两条同源染色体在染色质三维(3D)组织上可能存在差异。尽管先前的软件可以通过使用分阶段的遗传变异构建二倍体(母本和父本)Hi-C接触图谱,但它们都忽略了基因组中可变遗传变异密度导致的二倍体Hi-C接触图谱中的系统偏差。此外,很少有软件提供对等位基因特异性染色质3D组织的定量分析,包括区室、拓扑结构域和染色质环。

结果

在这项工作中,我们揭示了由可变遗传变异密度引起的等位基因分配偏差的特征,然后提出了一种新策略来校正二倍体Hi-C接触图谱中的系统偏差。基于偏差校正,我们开发了一个集成工具HiCHap,用于执行读段比对、接触图谱构建、全基因组区室、拓扑结构域和染色质环的鉴定,以及对二倍体Hi-C数据进行等位基因特异性测试。我们的结果表明,HiCHap中等位基因分配偏差的校正显著提高了二倍体Hi-C接触图谱的质量,这随后有助于全基因组鉴定二倍体染色质3D组织,包括区室、拓扑结构域和染色质环。最后,HiCHap也支持对单倍体Hi-C图谱的数据分析,而无需区分两条同源染色体。

结论

我们提供了一个集成软件包HiCHap,用于对二倍体Hi-C数据进行数据处理、偏差校正和结构分析。软件HiCHap的源代码和教程可在https://pypi.org/project/HiCHap/ 上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/331d/7590616/8877d6655995/12864_2020_7165_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验