Suppr超能文献

混合等离子体纳米结构中相位匹配高效二次谐波和宽带和频产生的直接可视化。

Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures.

作者信息

Li Zhe, Corbett Brian, Gocalinska Agnieszka, Pelucchi Emanuele, Chen Wen, Ryan Kevin M, Khan Pritam, Silien Christophe, Xu Hongxing, Liu Ning

机构信息

Department of Physics and Bernal Institute, University of Limerick, Limerick, Ireland.

The School of Physics and Technology, Institute for Advanced Studies and Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan, 430072 China.

出版信息

Light Sci Appl. 2020 Oct 22;9:180. doi: 10.1038/s41377-020-00414-4. eCollection 2020.

Abstract

Second harmonic generation and sum frequency generation (SHG and SFG) provide effective means to realize coherent light at desired frequencies when lasing is not easily achievable. They have found applications from sensing to quantum optics and are of particular interest for integrated photonics at communication wavelengths. Decreasing the footprints of nonlinear components while maintaining their high up-conversion efficiency remains a challenge in the miniaturization of integrated photonics. Here we explore lithographically defined AlGaInP nano(micro)structures/AlO/Ag as a versatile platform to achieve efficient SHG/SFG in both waveguide and resonant cavity configurations in both narrow- and broadband infrared (IR) wavelength regimes (1300-1600 nm). The effective excitation of highly confined hybrid plasmonic modes at fundamental wavelengths allows efficient SHG/SFG to be achieved in a waveguide of a cross-section of 113 nm × 250 nm, with a mode area on the deep subwavelength scale ( /135) at fundamental wavelengths. Remarkably, we demonstrate direct visualization of SHG/SFG phase-matching evolution in the waveguides. This together with mode analysis highlights the origin of the improved SHG/SFG efficiency. We also demonstrate strongly enhanced SFG with a broadband IR source by exploiting multiple coherent SFG processes on 1 µm diameter AlGaInP disks/AlO/Ag with a conversion efficiency of 14.8% MW which is five times the SHG value using the narrowband IR source. In both configurations, the hybrid plasmonic structures exhibit >1000 enhancement in the nonlinear conversion efficiency compared to their photonic counterparts. Our results manifest the potential of developing such nanoscale hybrid plasmonic devices for state-of-the-art on-chip nonlinear optics applications.

摘要

当激光不容易实现时,二次谐波产生和和频产生(SHG和SFG)为实现所需频率的相干光提供了有效的手段。它们已在从传感到量子光学等领域得到应用,并且在通信波长的集成光子学中具有特别的意义。在集成光子学的小型化过程中,在保持非线性元件高上转换效率的同时减小其尺寸仍然是一个挑战。在这里,我们探索光刻定义的AlGaInP纳米(微)结构/AlO/Ag作为一个通用平台,以在窄带和宽带红外(IR)波长范围(1300 - 1600 nm)的波导和谐振腔配置中实现高效的SHG/SFG。在基波波长下对高度受限的混合等离子体模式的有效激发使得在横截面为113 nm×250 nm的波导中能够实现高效的SHG/SFG,在基波波长下具有深亚波长尺度(λ²/135)的模式面积。值得注意的是,我们展示了波导中SHG/SFG相位匹配演化的直接可视化。这与模式分析一起突出了SHG/SFG效率提高的根源。我们还通过利用直径为1 µm的AlGaInP圆盘/AlO/Ag上的多个相干SFG过程,用宽带红外源展示了强烈增强的SFG,其转换效率为14.8%/MW,是使用窄带红外源时SHG值的五倍。在这两种配置中,与光子对应物相比,混合等离子体结构的非线性转换效率提高了1000倍以上。我们的结果表明了开发这种纳米级混合等离子体器件用于最先进的片上非线性光学应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e774/7582155/6a6628405edf/41377_2020_414_Fig1_HTML.jpg

相似文献

2
Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions.
Nano Lett. 2019 Jun 12;19(6):3838-3845. doi: 10.1021/acs.nanolett.9b01004. Epub 2019 May 24.
3
Remote Dual-Cavity Enhanced Second Harmonic Generation in a Hybrid Plasmonic Waveguide.
Nano Lett. 2022 Jan 26;22(2):688-694. doi: 10.1021/acs.nanolett.1c03824. Epub 2022 Jan 13.
5
Hybrid Three-Dimensional Spiral WSe Plasmonic Structures for Highly Efficient Second-Order Nonlinear Parametric Processes.
Research (Wash D C). 2018 Dec 9;2018:4164029. doi: 10.1155/2018/4164029. eCollection 2018.
7
Mode-Matching Enhancement of Second-Harmonic Generation with Plasmonic Nanopatch Antennas.
ACS Photonics. 2020 Dec 16;7(12):3333-3340. doi: 10.1021/acsphotonics.0c01545. Epub 2020 Nov 25.
9
Evidence of Cascaded Third-Harmonic Generation in Noncentrosymmetric Gold Nanoantennas.
Nano Lett. 2019 Oct 9;19(10):7013-7020. doi: 10.1021/acs.nanolett.9b02427. Epub 2019 Sep 5.
10
Lithographically Defined, Room Temperature Low Threshold Subwavelength Red-Emitting Hybrid Plasmonic Lasers.
Nano Lett. 2016 Dec 14;16(12):7822-7828. doi: 10.1021/acs.nanolett.6b04017. Epub 2016 Nov 29.

引用本文的文献

1
Second harmonic generation of optical spin-orbit interactions in hybrid plasmonic nanocircuits.
Nanophotonics. 2025 Mar 20;14(7):1003-1007. doi: 10.1515/nanoph-2024-0725. eCollection 2025 Apr.
2
Polarization Spin Inversion with Nonlinear Plasmon Scattering.
ACS Omega. 2025 Jan 28;10(5):4607-4613. doi: 10.1021/acsomega.4c09135. eCollection 2025 Feb 11.
3
Spatiotemporal imaging of nonlinear optics in van der Waals waveguides.
Nat Nanotechnol. 2025 Mar;20(3):374-380. doi: 10.1038/s41565-024-01849-1. Epub 2025 Jan 15.
4
Phase-matched five-wave mixing in zinc oxide microwire.
Nanophotonics. 2024 Jul 24;13(18):3403-3409. doi: 10.1515/nanoph-2024-0129. eCollection 2024 Aug.
5
All-optical control of high-purity trions in nanoscale waveguide.
Nat Commun. 2023 Apr 12;14(1):1891. doi: 10.1038/s41467-023-37481-1.
6
Facile and stable fabrication of wafer-scale, ultra-black -silicon with 3D nano/micro hybrid structures for solar cells.
Nanoscale Adv. 2022 Nov 3;5(1):142-152. doi: 10.1039/d2na00637e. eCollection 2022 Dec 20.
7
Phase Matching via Plasmonic Modal Dispersion for Third Harmonic Generation.
Adv Sci (Weinh). 2022 Jul;9(21):e2201180. doi: 10.1002/advs.202201180. Epub 2022 Jun 5.
8
Circular Polarization Conversion in Single Plasmonic Spherical Particles.
Nano Lett. 2022 Feb 23;22(4):1504-1510. doi: 10.1021/acs.nanolett.1c03848. Epub 2022 Feb 3.
10
Subwavelength hybrid plasmonic structures for nonlinear nanophotonics.
Light Sci Appl. 2021 Feb 22;10(1):38. doi: 10.1038/s41377-021-00479-9.

本文引用的文献

1
Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions.
Nano Lett. 2019 Jun 12;19(6):3838-3845. doi: 10.1021/acs.nanolett.9b01004. Epub 2019 May 24.
2
Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode.
Beilstein J Nanotechnol. 2018 Aug 27;9:2306-2314. doi: 10.3762/bjnano.9.215. eCollection 2018.
3
Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas.
Light Sci Appl. 2016 Jan 15;5(1):e16013. doi: 10.1038/lsa.2016.13. eCollection 2016 Jan.
4
Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation.
Nano Lett. 2018 Jun 13;18(6):3695-3702. doi: 10.1021/acs.nanolett.8b00830. Epub 2018 May 24.
5
Plasmon Waveguiding in Nanowires.
Chem Rev. 2018 Mar 28;118(6):2882-2926. doi: 10.1021/acs.chemrev.7b00441. Epub 2018 Feb 15.
6
Cascaded second-order optical nonlinearities in on-chip micro rings.
Opt Express. 2017 Nov 27;25(24):29927-29933. doi: 10.1364/OE.25.029927.
7
Transversely Divergent Second Harmonic Generation by Surface Plasmon Polaritons on Single Metallic Nanowires.
Nano Lett. 2017 Dec 13;17(12):7803-7808. doi: 10.1021/acs.nanolett.7b04016. Epub 2017 Nov 21.
8
Enhanced Second-Harmonic Generation from Sequential Capillarity-Assisted Particle Assembly of Hybrid Nanodimers.
Nano Lett. 2017 Sep 13;17(9):5381-5388. doi: 10.1021/acs.nanolett.7b01940. Epub 2017 Aug 9.
9
Rapid visualization of grain boundaries in monolayer MoS by multiphoton microscopy.
Nat Commun. 2017 Jun 5;8:15714. doi: 10.1038/ncomms15714.
10
Second harmonic generation in nano-structured thin-film lithium niobate waveguides.
Opt Express. 2017 Mar 20;25(6):6963-6973. doi: 10.1364/OE.25.006963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验