Li Zhe, Corbett Brian, Gocalinska Agnieszka, Pelucchi Emanuele, Chen Wen, Ryan Kevin M, Khan Pritam, Silien Christophe, Xu Hongxing, Liu Ning
Department of Physics and Bernal Institute, University of Limerick, Limerick, Ireland.
The School of Physics and Technology, Institute for Advanced Studies and Center for Nanoscience and Nanotechnology, Wuhan University, Wuhan, 430072 China.
Light Sci Appl. 2020 Oct 22;9:180. doi: 10.1038/s41377-020-00414-4. eCollection 2020.
Second harmonic generation and sum frequency generation (SHG and SFG) provide effective means to realize coherent light at desired frequencies when lasing is not easily achievable. They have found applications from sensing to quantum optics and are of particular interest for integrated photonics at communication wavelengths. Decreasing the footprints of nonlinear components while maintaining their high up-conversion efficiency remains a challenge in the miniaturization of integrated photonics. Here we explore lithographically defined AlGaInP nano(micro)structures/AlO/Ag as a versatile platform to achieve efficient SHG/SFG in both waveguide and resonant cavity configurations in both narrow- and broadband infrared (IR) wavelength regimes (1300-1600 nm). The effective excitation of highly confined hybrid plasmonic modes at fundamental wavelengths allows efficient SHG/SFG to be achieved in a waveguide of a cross-section of 113 nm × 250 nm, with a mode area on the deep subwavelength scale ( /135) at fundamental wavelengths. Remarkably, we demonstrate direct visualization of SHG/SFG phase-matching evolution in the waveguides. This together with mode analysis highlights the origin of the improved SHG/SFG efficiency. We also demonstrate strongly enhanced SFG with a broadband IR source by exploiting multiple coherent SFG processes on 1 µm diameter AlGaInP disks/AlO/Ag with a conversion efficiency of 14.8% MW which is five times the SHG value using the narrowband IR source. In both configurations, the hybrid plasmonic structures exhibit >1000 enhancement in the nonlinear conversion efficiency compared to their photonic counterparts. Our results manifest the potential of developing such nanoscale hybrid plasmonic devices for state-of-the-art on-chip nonlinear optics applications.
当激光不容易实现时,二次谐波产生和和频产生(SHG和SFG)为实现所需频率的相干光提供了有效的手段。它们已在从传感到量子光学等领域得到应用,并且在通信波长的集成光子学中具有特别的意义。在集成光子学的小型化过程中,在保持非线性元件高上转换效率的同时减小其尺寸仍然是一个挑战。在这里,我们探索光刻定义的AlGaInP纳米(微)结构/AlO/Ag作为一个通用平台,以在窄带和宽带红外(IR)波长范围(1300 - 1600 nm)的波导和谐振腔配置中实现高效的SHG/SFG。在基波波长下对高度受限的混合等离子体模式的有效激发使得在横截面为113 nm×250 nm的波导中能够实现高效的SHG/SFG,在基波波长下具有深亚波长尺度(λ²/135)的模式面积。值得注意的是,我们展示了波导中SHG/SFG相位匹配演化的直接可视化。这与模式分析一起突出了SHG/SFG效率提高的根源。我们还通过利用直径为1 µm的AlGaInP圆盘/AlO/Ag上的多个相干SFG过程,用宽带红外源展示了强烈增强的SFG,其转换效率为14.8%/MW,是使用窄带红外源时SHG值的五倍。在这两种配置中,与光子对应物相比,混合等离子体结构的非线性转换效率提高了1000倍以上。我们的结果表明了开发这种纳米级混合等离子体器件用于最先进的片上非线性光学应用的潜力。