Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH 45221, USA.
STAR Protoc. 2020 Aug 11;1(2):100085. doi: 10.1016/j.xpro.2020.100085. eCollection 2020 Sep 18.
Retention of multiplet captures in single-cell RNA sequencing (scRNA-seq) data can hinder identification of discrete or transitional cell populations and associated marker genes. To overcome this challenge, we created DoubletDecon to identify and remove doublets, multiplets of two cells, by using a combination of deconvolution to identify putative doublets and analyses of unique gene expression. Here, we provide the protocol for running DoubletDecon on scRNA-seq data. For complete details on the use and execution of this protocol, please refer to DePasquale et al. (2019).
单细胞 RNA 测序 (scRNA-seq) 数据中多重捕获的保留会阻碍离散或过渡细胞群以及相关标记基因的识别。为了克服这一挑战,我们创建了 DoubletDecon,通过使用去卷积来识别可能的二聚体和独特基因表达分析的组合来识别和去除二聚体,即两个细胞的多聚体。在这里,我们提供了在 scRNA-seq 数据上运行 DoubletDecon 的方案。有关此方案的使用和执行的完整详细信息,请参阅 DePasquale 等人。(2019 年)。