Chakarawet Khetpakorn, Atanasov Mihail, Marbey Jonathan, Bunting Philip C, Neese Frank, Hill Stephen, Long Jeffrey R
Max-Planck Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany.
Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Akad. Georgi Bontchev, Street 11, 1113 Sofia, Bulgaria.
J Am Chem Soc. 2020 Nov 11;142(45):19161-19169. doi: 10.1021/jacs.0c08460. Epub 2020 Oct 28.
We present an extensive study of tetranuclear transition-metal cluster compounds M(NPBu) and [M(NPBu)][B(CF)] (M = Ni, Cu; Bu = -butyl), which feature low-coordinate metal centers and direct metal-metal orbital overlap. X-ray diffraction, electrochemical, magnetic, spectroscopic, and computational analysis elucidate the nature of the bonding interactions in these clusters and the impact of these interactions on the electronic and magnetic properties. Direct orbital overlap results in strongly coupled, large-spin ground states in the [Ni(NPBu)] clusters and fully delocalized, spin-correlated electrons. Correlated electronic structure calculations confirm the presence of ferromagnetic ground states that arise from direct exchange between magnetic orbitals, and, in the case of the neutral cluster, itinerant electron magnetism similar to that in metallic ferromagnets. The cationic nickel cluster also possesses large magnetic anisotropy exemplified by a large, positive axial zero-field splitting parameter of = +7.95 or +9.2 cm, as determined by magnetometry or electron paramagnetic resonance spectroscopy, respectively. The [Ni(NPBu)] cluster is also the first molecule with easy-plane magnetic anisotropy to exhibit zero-field slow magnetic relaxation, and under a small applied field, it exhibits relaxation exclusively through an Orbach mechanism with a spin relaxation barrier of 16 cm. The = / complex [Cu(NPBu)] exhibits slow magnetic relaxation via a Raman process on the millisecond time scale, supporting the presence of slow relaxation via an Orbach process in the nickel analogue. Overall, this work highlights the unique electronic and magnetic properties that can be realized in metal clusters featuring direct metal-metal orbital interactions between low-coordinate metal centers.
我们对四核过渡金属簇化合物M(NPBu)和[M(NPBu)][B(CF)](M = Ni、Cu;Bu = -丁基)进行了广泛研究,这些化合物具有低配位金属中心和直接的金属-金属轨道重叠。X射线衍射、电化学、磁性、光谱和计算分析阐明了这些簇中键合相互作用的性质以及这些相互作用对电子和磁性性质的影响。直接的轨道重叠导致[Ni(NPBu)]簇中形成强耦合的大自旋基态以及完全离域的自旋相关电子。相关电子结构计算证实了由磁性轨道之间的直接交换产生的铁磁基态的存在,并且对于中性簇,存在类似于金属铁磁体中的巡游电子磁性。阳离子镍簇还具有大磁各向异性,分别通过磁力测量或电子顺磁共振光谱测定,其轴向零场分裂参数大且为正,值为 = +7.95或 +9.2 cm。[Ni(NPBu)]簇也是第一个具有易面磁各向异性且表现出零场慢磁弛豫的分子,在小外加磁场下,它仅通过具有16 cm自旋弛豫势垒的Orbach机制表现出弛豫。 = / 配合物[Cu(NPBu)]在毫秒时间尺度上通过拉曼过程表现出慢磁弛豫,这支持了镍类似物中通过Orbach过程存在慢弛豫。总体而言,这项工作突出了在具有低配位金属中心之间直接金属-金属轨道相互作用的金属簇中可以实现的独特电子和磁性性质。