Raucci Umberto, Chiariello Maria Gabriella, Rega Nadia
Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di M.S.Angelo, via Cintia, I-80126 Napoli, Italy.
CRIB, Centro Interdipartimentale di Ricerca sui Biomateriali, Piazzale Tecchio, I-80125 Napoli, Italy.
J Chem Theory Comput. 2020 Nov 10;16(11):7033-7043. doi: 10.1021/acs.jctc.0c00782. Epub 2020 Oct 28.
The rapid growth of time-resolved spectroscopies and the theoretical advances in ab initio molecular dynamics (AIMD) pave the way to look at the real-time molecular motion following the electronic excitation. Here, we exploited the capabilities of AIMD combined with a hybrid implicit/explicit model of solvation to investigate the ultrafast excited-state proton transfer (ESPT) reaction of a super photoacid, known as QCy9, in water solution. QCy9 transfers a proton to a water solvent molecule within 100 fs upon the electronic excitation in aqueous solution, and it is the strongest photoacid reported in the literature so far. Because of the ultrafast kinetics, it has been experimentally hypothesized that the ESPT escapes the solvent dynamics control (Huppert et al., 90). The sampling of the solvent configuration space on the ground electronic state is the first key step toward the simulation of the ESPT event. Therefore, several configurations in the Franck-Condon region, describing an average solvation, were chosen as starting points for the excited-state dynamics. In all cases, the excited-state evolution spontaneously leads to the proton transfer event, whose rate is strongly dependent on the hydrogen bond network around the proton acceptor solvent molecule. Our study revealed that the explicit representation at least of three solvation shells around the proton acceptor molecule is necessary to stabilize the excess proton. Furthermore, the analysis of the solvent molecule motions in proximity of the reaction site suggested that even in the case of the strongest photoacid, the ESPT is actually assisted by the solvation dynamics of the first and second solvation shells of the water accepting molecule.
时间分辨光谱学的迅速发展以及从头算分子动力学(AIMD)的理论进步为研究电子激发后的实时分子运动铺平了道路。在此,我们利用AIMD的能力并结合溶剂化的混合隐式/显式模型,研究了一种名为QCy9的超强光酸在水溶液中的超快激发态质子转移(ESPT)反应。QCy9在水溶液中发生电子激发后,会在100飞秒内将一个质子转移到水溶剂分子上,它是迄今为止文献报道中最强的光酸。由于其超快的动力学过程,实验推测ESPT不受溶剂动力学控制(Huppert等人,90)。对基态电子态上溶剂构型空间的采样是模拟ESPT事件的首要关键步骤。因此,选择了弗兰克 - 康登区域中描述平均溶剂化的几种构型作为激发态动力学的起始点。在所有情况下,激发态演化都会自发导致质子转移事件,其速率强烈依赖于质子受体溶剂分子周围的氢键网络。我们的研究表明,至少在质子受体分子周围明确表示出三个溶剂化壳层对于稳定过量质子是必要的。此外,对反应位点附近溶剂分子运动的分析表明,即使对于最强的光酸,ESPT实际上也受到接受水分子第一和第二溶剂化壳层的溶剂化动力学的协助。