Suppr超能文献

通过相互作用的量子原子研究 DNA 中的碱基配对结构。

Anatomy of Base Pairing in DNA by Interacting Quantum Atoms.

机构信息

CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czechia.

Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.

出版信息

J Chem Inf Model. 2021 Jan 25;61(1):211-222. doi: 10.1021/acs.jcim.0c00642. Epub 2020 Oct 28.

Abstract

The formation of purine and pyrimidine base pairs (BPs), which contributes to shaping of the canonical and noncanonical 3D structures of nucleic acids, is one the most investigated phenomena in chemistry and life sciences. In this contribution, the anatomy of the bond energy (BDE) of the base-pairing interaction in 39 different arrangements found experimentally or predicted for DNA structures containing the four common nucleobases (A, C, G, T) in their neutral or protonated forms is described in light of the theory of interacting quantum atoms within the context of the quantum theory of atoms in molecules. The interplay of individual energy components involved in the three stages of the bond formation process (structural deformation, electron-density promotion, and intermolecular interaction) is studied. We recognized that for the neutral BPs, variations in the kinetic and electrostatic contributions to the BDE are rather negligible, leaving the exchange-correlation energy as the main stabilizing component. It is shown that the contribution of the exchange-correlation term can be recovered by including atoms that are formally assumed to be hydrogen bonded (primary interaction). In contrast, to recover the electrostatic component of interaction, one must consider both the primary and secondary (formally nonbonded atoms) interatomic interactions. The results of our study were employed to design new types of BPs with altered bonding anatomy. We demonstrate that improving the electrostatic characteristics of the BPs does not necessarily result in greater interaction energies if weak secondary hydrogen bonding is destroyed. However, the main tuning factor for systems with conserved interacting faces (primary interactions) is the electrostatic component of the interaction energy resulting from the secondary atom-atom electrostatics.

摘要

嘌呤和嘧啶碱基对(BP)的形成有助于塑造核酸的典型和非典型 3D 结构,是化学和生命科学中研究最多的现象之一。在本研究中,根据分子轨道量子原子理论,描述了实验中发现或预测的 39 种不同排列的碱基对(BP)键能(BDE)的结构,这些排列存在于含有中性或质子化形式的四种常见核碱基(A、C、G、T)的 DNA 结构中。研究了键形成过程(结构变形、电子密度促进和分子间相互作用)三个阶段中涉及的各个能量成分的相互作用。我们认识到,对于中性 BP,键形成过程中动力学和静电贡献的变化可以忽略不计,使交换相关能量成为主要稳定成分。结果表明,可以通过包含形式上假定为氢键(主要相互作用)的原子来恢复交换相关项的贡献。相比之下,要恢复相互作用的静电分量,必须考虑主要和次要(形式上的非键原子)原子间相互作用。我们的研究结果被用于设计具有改变的键结构的新型 BP。我们证明,如果破坏了弱的次级氢键,改善 BP 的静电特性不一定会导致更大的相互作用能。然而,如果保留相互作用面(主要相互作用)的系统,主要的调整因素是次级原子间静电产生的相互作用能的静电分量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验