Suppr超能文献

当肾上腺静脉取样单侧成功时,预测醛固酮增多症亚型。

Prediction of hyperaldosteronism subtypes when adrenal vein sampling is unilaterally successful.

机构信息

Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy.

Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi' (DEI), University of Bologna, Bologna, Italy.

出版信息

Eur J Endocrinol. 2020 Dec;183(6):657-667. doi: 10.1530/EJE-20-0656.

Abstract

OBJECTIVE

Adrenal venous sampling (AVS) is the gold standard to discriminate patients with unilateral primary aldosteronism (UPA) from bilateral disease (BPA). AVS is technically demanding and in cases of unsuccessful cannulation of adrenal veins, the results may not always be interpreted. The aim of our study was to develop diagnostic models to distinguish UPA from BPA, in cases of unilateral successful AVS and the presence of contralateral suppression of aldosterone secretion.

DESIGN

Retrospective evaluation of 158 patients referred to a tertiary hypertension unit who underwent AVS. We randomly assigned 110 patients to a training cohort and 48 patients to a validation cohort to develop and test the diagnostic models.

METHODS

Supervised machine learning algorithms and regression models were used to develop and validate two prediction models and a simple 19-point score system to stratify patients according to their subtype diagnosis.

RESULTS

Aldosterone levels at screening and after confirmatory testing, lowest potassium, ipsilateral and contralateral imaging findings at CT scanning, and contralateral ratio at AVS, were associated with a diagnosis of UPA and were included in the diagnostic models. Machine learning algorithms correctly classified the majority of patients both at training and validation (accuracy: 82.9-95.7%). The score system displayed a sensitivity/specificity of 95.2/96.9%, with an AUC of 0.971. A flow-chart integrating our score correctly managed all patients except 3 (98.1% accuracy), avoiding the potential repetition of 77.2% of AVS procedures.

CONCLUSIONS

Our score could be integrated in clinical practice and guide surgical decision-making in patients with unilateral successful AVS and contralateral suppression.

摘要

目的

肾上腺静脉采样(AVS)是鉴别单侧原发性醛固酮增多症(UPA)与双侧疾病(BPA)的金标准。AVS 技术要求高,在肾上腺静脉插管不成功的情况下,结果可能并不总是可解释的。我们的研究目的是建立诊断模型,以区分单侧成功 AVS 且对侧醛固酮分泌抑制的情况下的 UPA 和 BPA。

设计

回顾性评估了 158 例转诊至三级高血压专科的患者,这些患者均接受了 AVS。我们将 110 例患者随机分配至训练队列,48 例患者分配至验证队列,以开发和测试诊断模型。

方法

使用监督机器学习算法和回归模型,开发并验证了两种预测模型和一种简单的 19 分评分系统,根据患者的亚型诊断对其进行分层。

结果

筛选时和确认性检测时的醛固酮水平、最低血钾、CT 扫描时同侧和对侧的影像学发现,以及 AVS 时的对侧比值,与 UPA 的诊断相关,并纳入了诊断模型。机器学习算法在训练和验证时均正确分类了大多数患者(准确性:82.9%-95.7%)。评分系统的敏感性/特异性为 95.2%/96.9%,AUC 为 0.971。整合了我们评分系统的流程图正确管理了除 3 例患者以外的所有患者(准确性为 98.1%),避免了 77.2%的 AVS 程序的潜在重复。

结论

我们的评分系统可整合至临床实践中,指导单侧成功 AVS 且对侧抑制的患者的手术决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验