Suppr超能文献

A density functional theoretical study on the stability of Pt clusters in MOF-808.

作者信息

Song Xiaohui, Mei Donghai

机构信息

School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.

出版信息

Phys Chem Chem Phys. 2020 Oct 28;22(41):23645-23656. doi: 10.1039/d0cp04444j.

Abstract

Metal organic framework (MOF)-encapsulated metal clusters have shown superior catalytic activity due to geometric and electronic properties of metal clusters, which are largely determined by adsorption sites and sizes and morphologies of encapsulated metal clusters. In the present work, anchoring sites, the stability, and the agglomeration probability of Ptn (n = 1-23) clusters over an MOF-808 framework structure were studied using density functional theory calculations and ab initio molecular dynamics simulation. It has been found that Ptn (n = 1-7) clusters bind more strongly at the Zr6 metal node sites than at the interface and linker sites. Upon adsorption, significant amounts of electrons (+0.92 to +1.96 |e|) are transferred from Ptn clusters to the MOF framework. The agglomeration of single Pt1 atoms at the Zr6 metal node to form a Ptn cluster is unlikely, while the agglomeration at the interface or the linker is energetically feasible. Compared with the single Zr6 node, the bonding of Ptn clusters with two Zr6 metal nodes is weaker, with less electron (+0.12 to +0.89 |e|) transfer. Finally, our calculations show that CO adsorption at the single Pt atom is stabilized at the interface site, preventing its further agglomeration with Ptn clusters between the two Zr6 metal nodes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验