Suppr超能文献

微生物输入到凋落物层将气候转化为改变的有机物质性质。

Microbial inputs at the litter layer translate climate into altered organic matter properties.

机构信息

Department of Earth Sciences, Memorial University, St. John's, NL, Canada.

Department of Agricultural Sciences, Helsinki University, Helsinki, Finland.

出版信息

Glob Chang Biol. 2021 Jan;27(2):435-453. doi: 10.1111/gcb.15420. Epub 2020 Nov 16.

Abstract

Plant litter chemistry is altered during decomposition but it remains unknown if these alterations, and thus the composition of residual litter, will change in response to climate. Selective microbial mineralization of litter components and the accumulation of microbial necromass can drive litter compositional change, but the extent to which these mechanisms respond to climate remains poorly understood. We addressed this knowledge gap by studying needle litter decomposition along a boreal forest climate transect. Specifically, we investigated how the composition and/or metabolism of the decomposer community varies with climate, and if that variation is associated with distinct modifications of litter chemistry during decomposition. We analyzed the composition of microbial phospholipid fatty acids (PLFAs) in the litter layer and measured natural abundance δ C values as an integrated measure of microbial metabolisms. Changes in litter chemistry and δ C values were measured in litterbag experiments conducted at each transect site. A warmer climate was associated with higher litter nitrogen concentrations as well as altered microbial community structure (lower fungi:bacteria ratios) and microbial metabolism (higher δ C ). Litter in warmer transect regions accumulated less aliphatic-C (lipids, waxes) and retained more O-alkyl-C (carbohydrates), consistent with enhanced C-enrichment in residual litter, than in colder regions. These results suggest that chemical changes during litter decomposition will change with climate, driven primarily by indirect climate effects (e.g., greater nitrogen availability and decreased fungi:bacteria ratios) rather than direct temperature effects. A positive correlation between microbial biomass δ C values and C-enrichment during decomposition suggests that change in litter chemistry is driven more by distinct microbial necromass inputs than differences in the selective removal of litter components. Our study highlights the role that microbial inputs during early litter decomposition can play in shaping surface litter contribution to soil organic matter as it responds to climate warming effects such as greater nitrogen availability.

摘要

植物凋落物的化学组成在分解过程中会发生变化,但目前尚不清楚这些变化(以及残留凋落物的组成)是否会对气候做出响应。凋落物成分的选择性微生物矿化和微生物残体的积累会导致凋落物组成的变化,但这些机制对气候的响应程度还知之甚少。为了填补这一知识空白,我们沿北方森林气候梯度进行了一项研究,对针叶凋落物的分解进行了研究。具体来说,我们研究了分解者群落的组成和/或代谢如何随气候而变化,以及这种变化是否与分解过程中凋落物化学性质的明显变化有关。我们分析了凋落物层中微生物磷脂脂肪酸(PLFA)的组成,并测量了天然丰度 δ C 值,作为微生物代谢的综合指标。在每个梯度点的凋落袋实验中,我们测量了凋落物化学性质和 δ C 值的变化。较温暖的气候与较高的凋落物氮浓度以及微生物群落结构的改变(真菌:细菌比例降低)和微生物代谢(较高的 δ C )有关。与较冷地区相比,温暖地区的凋落物积累的脂肪族-C(脂质、蜡)较少,保留的 O-烷基-C(碳水化合物)较多,这与残留凋落物中 C 的富集增加一致。这些结果表明,凋落物分解过程中的化学变化将随气候而变化,主要是由间接气候效应(例如,较高的氮有效性和降低的真菌:细菌比例)驱动,而不是直接的温度效应。微生物生物量 δ C 值与分解过程中 C 富集之间的正相关关系表明,凋落物化学性质的变化主要是由独特的微生物残体输入驱动的,而不是由于对凋落物成分的选择性去除而导致的。我们的研究强调了在早期凋落物分解过程中微生物输入可以在塑造表面凋落物对土壤有机物质的贡献方面发挥作用,因为它对气候变暖效应(如氮有效性增加)做出响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验