Suppr超能文献

面向智能电机控制的强化学习环境工具箱

Toward a Reinforcement Learning Environment Toolbox for Intelligent Electric Motor Control.

作者信息

Traue Arne, Book Gerrit, Kirchgassner Wilhelm, Wallscheid Oliver

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Mar;33(3):919-928. doi: 10.1109/TNNLS.2020.3029573. Epub 2022 Feb 28.

Abstract

Electric motors are used in many applications, and their efficiency is strongly dependent on their control. Among others, linear feedback approaches or model predictive control methods are well known in the scientific literature and industrial practice. A novel approach is to use reinforcement learning (RL) to have an agent learn electric drive control from scratch merely by interacting with a suitable control environment. RL achieved remarkable results with superhuman performance in many games (e.g., Atari classics or Go) and also becomes more popular in control tasks, such as cart-pole or swinging pendulum benchmarks. In this work, the open-source Python package gym-electric-motor (GEM) is developed for ease of training of RL-agents for electric motor control. Furthermore, this package can be used to compare the trained agents with other state-of-the-art control approaches. It is based on the OpenAI Gym framework that provides a widely used interface for the evaluation of RL-agents. The package covers different dc and three-phase motor variants, as well as different power electronic converters and mechanical load models. Due to the modular setup of the proposed toolbox, additional motor, load, and power electronic devices can be easily extended in the future. Furthermore, different secondary effects, such as converter interlocking time or noise, are considered. An intelligent controller example based on the deep deterministic policy gradient algorithm that controls a series dc motor is presented and compared to a cascaded proportional-integral controller as a baseline for future research. Here, safety requirements are particularly highlighted as an important constraint for data-driven control algorithms applied to electric energy systems. Fellow researchers are encouraged to use the GEM framework in their RL investigations or contribute to the functional scope (e.g., further motor types) of the package.

摘要

电动机在许多应用中都有使用,其效率在很大程度上取决于控制方式。其中,线性反馈方法或模型预测控制方法在科学文献和工业实践中广为人知。一种新颖的方法是使用强化学习(RL),让智能体仅通过与合适的控制环境进行交互来从头学习电驱动控制。强化学习在许多游戏(如雅达利经典游戏或围棋)中取得了超人类表现的显著成果,并且在控制任务中也越来越受欢迎,比如小车摆杆或单摆基准测试。在这项工作中,开发了开源Python包gym - electric - motor(GEM),以便于训练用于电动机控制的强化学习智能体。此外,这个包可用于将训练好的智能体与其他先进的控制方法进行比较。它基于OpenAI Gym框架,该框架为强化学习智能体的评估提供了一个广泛使用的接口。该包涵盖了不同的直流和三相电机变体,以及不同的电力电子变换器和机械负载模型。由于所提出的工具箱的模块化设置,未来可以轻松扩展额外的电机、负载和电力电子设备。此外,还考虑了不同的次要影响,如变换器互锁时间或噪声。给出了一个基于深度确定性策略梯度算法控制串联直流电动机的智能控制器示例,并将其与作为未来研究基线的级联比例积分控制器进行了比较。在此,安全要求被特别强调为应用于电能系统的数据驱动控制算法的一个重要约束。鼓励同行研究人员在他们的强化学习研究中使用GEM框架,或为该包的功能范围(如更多电机类型)做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验