Suppr超能文献

使用自主高光谱辐射测量法对米级和十米级卫星图像的暗光谱拟合大气校正进行敏感性分析。

Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry.

作者信息

Vanhellemont Quinten

出版信息

Opt Express. 2020 Sep 28;28(20):29948-29965. doi: 10.1364/OE.397456.

Abstract

The performance of the dark spectrum fitting (DSF) atmospheric correction algorithm is evaluated using matchups between metre- and decametre-scale satellite imagery as processed with ACOLITE and measurements from autonomous PANTHYR hyperspectral radiometer systems deployed in the Adriatic and North Sea. Imagery from the operational land imager (OLI) on Landsat 8, the multispectral instrument (MSI) on Sentinel-2 A and B, and the PlanetScope CubeSat constellation was processed for both sites using a fixed atmospheric path reflectance in a small region of interest around the system's deployment location, using a number of processing settings, including a new sky reflectance correction. The mean absolute relative differences (MARD) between in situ and satellite measured reflectances reach <20% in the Blue and 11% in the Green bands around 490 and 560 nm for the best performing configuration for MSI and OLI. Higher relative errors are found for the shortest Blue bands around 440 nm (30-100% MARD), and in the Red-Edge and near-infrared bands (35-100% MARD), largely influenced by the lower absolute data range in the observations. Root mean squared differences (RMSD) increase from 0.005 in the NIR to about 0.015-0.020 in the Blue band, consistent with increasing atmospheric path reflectance. Validation of the Red-Edge and NIR bands on Sentinel-2 is presented, as well as for the first time, the Panchromatic band (17-26% MARD) on Landsat 8, and the derived Orange contra-band (8-33% MARD for waters in the algorithm domain, and around 40-80% MARD overall). For Sentinel-2, excluding the SWIR bands from the DSF gave better performances, likely due to calibration issues of MSI at longer wavelengths. Excluding the SWIR on Landsat 8 gave good performance as well, indicating robustness of the DSF to the available band set. The DSF performance was found to be rather insensitive to (1) the wavelength spacing in the lookup tables used for the atmospheric correction, (2) the use of default or ancillary information on gas concentration and atmospheric pressure, and (3) the size of the ROI over which the path reflectance is estimated. The performance of the PlanetScope constellation is found to be similar to previously published results, with the standard DSF giving the best results in the visible bands in terms of MARD (24-40% overall, and 18-29% for the turbid site). The new sky reflectance correction gave mixed results, although it reduced the mean biases for certain configurations and improved results for the processing excluding the SWIR bands, giving lower RMSD and MARD especially at longer wavelengths (>600 nm). The results presented in this article should serve as guidelines for general use of ACOLITE and the DSF.

摘要

利用ACOLITE处理的米级和十米级卫星图像与部署在亚得里亚海和北海的自主PANTHYR高光谱辐射计系统的测量数据之间的匹配,对暗光谱拟合(DSF)大气校正算法的性能进行了评估。使用系统部署位置周围小感兴趣区域内的固定大气路径反射率,以及包括新的天空反射率校正在内的多种处理设置,对Landsat 8上的业务陆地成像仪(OLI)、Sentinel-2 A和B上的多光谱仪器(MSI)以及PlanetScope CubeSat星座的图像进行了处理。对于MSI和OLI的最佳性能配置,原位测量和卫星测量反射率之间的平均绝对相对差异(MARD)在490和560 nm附近的蓝波段达到<20%,在绿波段达到11%。在440 nm附近最短的蓝波段(MARD为30 - 100%)以及红边和近红外波段(MARD为35 - 100%)发现了更高的相对误差,这在很大程度上受观测中较低的绝对数据范围影响。均方根差异(RMSD)从近红外波段的0.005增加到蓝波段的约0.015 - 0.020,这与大气路径反射率的增加一致。展示了Sentinel-2红边和近红外波段的验证结果,以及首次展示了Landsat 8全色波段(MARD为17 - 26%)和派生的橙色反演波段(算法域内水域的MARD为8 - 33%,总体约为40 - 80%)的验证结果。对于Sentinel-2,从DSF中排除短波红外(SWIR)波段可获得更好的性能,这可能是由于MSI在较长波长处的校准问题。从Landsat 8中排除SWIR波段也能获得良好性能,表明DSF对可用波段集具有鲁棒性。发现DSF性能对以下方面相当不敏感:(1)用于大气校正的查找表中的波长间距;(2)气体浓度和大气压力的默认或辅助信息的使用;(3)估计路径反射率的感兴趣区域(ROI)的大小。发现PlanetScope星座的性能与先前发表的结果相似,标准DSF在可见波段的MARD方面给出了最佳结果(总体为24 - 40%,浑浊站点为18 - 29%)。新的天空反射率校正结果好坏参半,尽管它减少了某些配置的平均偏差,并改善了排除SWIR波段的处理结果,特别是在较长波长(>600 nm)时给出了更低的RMSD和MARD。本文给出的结果应作为ACOLITE和DSF一般使用的指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验