Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664, Warszawa, Poland.
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach (formerly University of Podlasie), ul. 3 Maja 54, 08-110, Siedlce, Poland.
Chem Asian J. 2021 Feb 15;16(4):261-276. doi: 10.1002/asia.202000985. Epub 2020 Dec 30.
This review addresses nitration reactions of porphyrin derivatives. Simple porphyrins modifications afford valuable intermediates in this area of chemistry. They are useful materials for further transformations, as the NO group introduced into parent porphyrin system increases its electrophilic character, thus allowing a broad spectrum of subsequent reactions, e. g. reduction of NO to NH , subsequent diazotisation, nucleophilic substitution of hydrogen (in ortho-position to NO ), a variety of cyclizations, etc. Such reactions are often utilized in the first steps of the designed syntheses, leading to attractive and useful target porphyrin molecules. This approach (via nitro-derivatives) allows synthesizing numerous porphyrin-like compounds of a high degree of complexity, and has thus become one of the methods choice. The substitution by NO group can take place at all positions of the porphyrin systems: four meso-positions (5, 10, 15, 20) and eight positions β (2, 3, 7, 8, 12, 13, 17, 18). The third possibility includes the nitration in meso-aryl rings attached to positions 5, 10, 15, and 20. The latter derivatives (meso-aryl substituted ones) are a large, well-known group of synthetic porphyrins. The nitration reactions described herein follow three various mechanisms: (a) radical, (b) via π-cation radicals and π-dications, and (c) electrophilic. All the above cases are discussed in detail. According to our knowledge, this is the first such systematic account concerning these reactions.
本文综述了卟啉衍生物的硝化反应。卟啉的简单修饰为该领域的化学反应提供了有价值的中间体。它们是进一步转化的有用材料,因为引入母体卟啉系统的 NO 基团增加了其亲电性,从而允许进行广泛的后续反应,例如将 NO 还原为 NH ,随后进行重氮化、氢的亲核取代(在 NO 的邻位)、各种环化等。这些反应通常用于设计合成的第一步,得到有吸引力和有用的目标卟啉分子。这种方法(通过硝基衍生物)允许合成高度复杂的许多类卟啉化合物,因此已成为方法选择之一。NO 基团的取代可以发生在卟啉系统的所有位置:四个meso-位置(5、10、15、20)和八个β位置(2、3、7、8、12、13、17、18)。第三种可能性包括连接到位置 5、10、15 和 20 的meso-芳环的硝化。后者的衍生物(meso-芳基取代的)是一个大的、众所周知的合成卟啉组。本文所述的硝化反应遵循三种不同的机制:(a)自由基,(b)通过π-阳离子自由基和π-二阳离子,和(c)亲电。所有上述情况都进行了详细讨论。据我们所知,这是关于这些反应的第一个这样的系统论述。