Jia Ya-Hui, Mei Yi, Zhang Mengjie
IEEE Trans Cybern. 2022 Jun;52(6):4246-4259. doi: 10.1109/TCYB.2020.3025577. Epub 2022 Jun 16.
Cooperative co-evolutionary algorithms have addressed many large-scale problems successfully, but the nonseparable large-scale problems with overlapping subcomponents are still a serious difficulty that has not been conquered yet. First, the existence of shared variables makes the problem hard to be decomposed. Second, existing cooperative co-evolutionary frameworks usually cannot maintain the two crucial factors: high cooperation frequency and effective computing resource allocation, simultaneously when optimizing the overlapping subcomponents. Aiming at these two issues, this article proposes a new contribution-based cooperative co-evolutionary algorithm to decompose and optimize nonseparable large-scale problems with overlapping subcomponents effectively and efficiently: 1) a contribution-based decomposition method is proposed to assign the shared variables. Among all the subcomponents containing a shared variable, the one that contributes the most to the entire problem will include the shared variable and 2) to achieve the two crucial factors at the same time, a new contribution-based optimization framework is designed to award the important subcomponents based on the round-robin structure. Experimental studies show that the proposed algorithm performs significantly better than the state-of-the-art algorithms due to the effective grouping structure generated by the proposed decomposition method and the fast optimizing speed provided by the new optimization framework.