Suppr超能文献

基于最优 ARIMA 估计的新冠疫情传播预测。

Prognosticating the Spread of Covid-19 Pandemic Based on Optimal Arima Estimators.

机构信息

Department of Mathematics, School of Basic and Applied Sciences, K. R. Mangalam University, Gurugram, Haryana, India.

School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

出版信息

Endocr Metab Immune Disord Drug Targets. 2021;21(4):586-591. doi: 10.2174/1871530320666201029143122.

Abstract

COVID-19 cases have been reported as a global threat and several studies are being conducted using various modelling techniques to evaluate patterns of disease dispersion in the upcoming weeks. Here we propose a simple statistical model that could be used to predict the epidemiological extent of community spread of COVID-19 from the explicit data based on optimal ARIMA model estimators. Raw data was retrieved on confirmed cases of COVID-19 from Johns Hopkins University (https://github.com/CSSEGISandData/COVID-19) and the Auto-Regressive Integrated Moving Average (ARIMA) model was fitted based on cumulative daily figures of confirmed cases aggregated globally for ten major countries to predict their incidence trend. Statistical analysis was completed by using R 3.5.3 software. The optimal ARIMA model having the lowest Akaike information criterion (AIC) value for US (0,2,0); Spain (1,2,0); France (0,2,1); Germany (3,2,2); Iran (1,2,1); China (0,2,1); Russia (3,2,1); India (2,2,2); Australia (1,2,0) and South Africa (0,2,2) imparted the nowcasting of trends for the upcoming weeks. These parameters are (p, d, q) where p refers to the number of autoregressive terms, d refers to the number of times the series has to be differenced before it becomes stationary, and q refers to the number of moving average terms. Results obtained from the ARIMA model showed a significant decrease in cases in Australia; a stable case for China and rising cases have been observed in other countries. This study predicted the possible proliferate of COVID-19, although spreading significantly depends upon the various control and measurement policy taken by each country.

摘要

COVID-19 病例已被报告为全球威胁,并且正在使用各种建模技术进行几项研究,以评估未来几周疾病传播模式。在这里,我们提出了一种简单的统计模型,可以根据基于最优 ARIMA 模型估计器的明确数据来预测 COVID-19 社区传播的流行病学范围。从约翰霍普金斯大学(https://github.com/CSSEGISandData/COVID-19)检索了 COVID-19 的确诊病例的原始数据,并基于全球十个主要国家的确诊病例的累积日数据拟合了自回归综合移动平均(ARIMA)模型,以预测其发病趋势。使用 R 3.5.3 软件完成了统计分析。对于美国(0,2,0);西班牙(1,2,0);法国(0,2,1);德国(3,2,2);伊朗(1,2,1);中国(0,2,1);俄罗斯(3,2,1);印度(2,2,2);澳大利亚(1,2,0)和南非(0,2,2),具有最低赤池信息量准则(AIC)值的最优 ARIMA 模型(0,2,0),为未来几周的趋势提供了即时预测。这些参数是(p,d,q),其中 p 是自回归项的数量,d 是序列在成为平稳之前需要差分的次数,q 是移动平均项的数量。ARIMA 模型的结果表明,澳大利亚的病例数显著下降;中国的病例数稳定,其他国家的病例数则在上升。这项研究预测了 COVID-19 可能的扩散,尽管传播的情况很大程度上取决于各国采取的各种控制和测量政策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验