Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
J Biol Chem. 2020 Dec 25;295(52):18494-18507. doi: 10.1074/jbc.REV120.015190. Epub 2020 Oct 29.
Ligand bias is the ability of ligands to differentially activate certain receptor signaling responses compared with others. It reflects differences in the responses of a receptor to specific ligands and has implications for the development of highly specific therapeutics. Whereas ligand bias has been studied primarily for G protein-coupled receptors (GPCRs), there are also reports of ligand bias for receptor tyrosine kinases (RTKs). However, the understanding of RTK ligand bias is lagging behind the knowledge of GPCR ligand bias. In this review, we highlight how protocols that were developed to study GPCR signaling can be used to identify and quantify RTK ligand bias. We also introduce an operational model that can provide insights into the biophysical basis of RTK activation and ligand bias. Finally, we discuss possible mechanisms underpinning RTK ligand bias. Thus, this review serves as a primer for researchers interested in investigating ligand bias in RTK signaling.
配体偏向是指配体相对于其他配体能够不同地激活某些受体信号转导反应的能力。它反映了受体对特定配体的反应差异,并对高度特异性治疗药物的开发具有重要意义。虽然配体偏向主要在 G 蛋白偶联受体(GPCRs)中进行了研究,但也有关于受体酪氨酸激酶(RTKs)配体偏向的报道。然而,与 GPCR 配体偏向的知识相比,对 RTK 配体偏向的理解还相对滞后。在这篇综述中,我们强调了如何使用开发来研究 GPCR 信号转导的方案来识别和量化 RTK 配体偏向。我们还介绍了一个可操作的模型,该模型可以深入了解 RTK 激活和配体偏向的生物物理基础。最后,我们讨论了 RTK 配体偏向的可能机制。因此,本篇综述为有兴趣研究 RTK 信号转导中配体偏向的研究人员提供了一个入门指南。