Karp Jonathan, Bramberger Max, Grundner Martin, Schollwöck Ulrich, Millis Andrew J, Zingl Manuel
Department of Applied Physics and Applied Math, Columbia University, New York, New York 10027, USA.
Arnold Sommerfeld Center of Theoretical Physics, Department of Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany.
Phys Rev Lett. 2020 Oct 16;125(16):166401. doi: 10.1103/PhysRevLett.125.166401.
Sr_{2}MoO_{4} is isostructural to the unconventional superconductor Sr_{2}RuO_{4} but with two electrons instead of two holes in the Mo/Ru-t_{2g} orbitals. Both materials are Hund's metals, but while Sr_{2}RuO_{4} has a van Hove singularity in close proximity to the Fermi surface, the van Hove singularity of Sr_{2}MoO_{4} is far from the Fermi surface. By using density functional plus dynamical mean-field theory, we determine the relative influence of van Hove and Hund's metal physics on the correlation properties. We show that theoretically predicted signatures of Hund's metal physics occur on the occupied side of the electronic spectrum of Sr_{2}MoO_{4}, identifying Sr_{2}MoO_{4} as an ideal candidate system for a direct experimental confirmation of the theoretical concept of Hund's metals via photoemission spectroscopy.
Sr₂MoO₄与非常规超导体Sr₂RuO₄具有相同的晶体结构,但在Mo/Ru - t₂g轨道中有两个电子而非两个空穴。这两种材料都是洪德金属,但Sr₂RuO₄在费米面附近有一个范霍夫奇点,而Sr₂MoO₄的范霍夫奇点远离费米面。通过使用密度泛函加动态平均场理论,我们确定了范霍夫和洪德金属物理对关联性质的相对影响。我们表明,洪德金属物理的理论预测特征出现在Sr₂MoO₄电子能谱的占据侧,这表明Sr₂MoO₄是通过光电子能谱直接实验证实洪德金属理论概念的理想候选体系。