Crandall L E, Rygg J R, Spaulding D K, Boehly T R, Brygoo S, Celliers P M, Eggert J H, Fratanduono D E, Henderson B J, Huff M F, Jeanloz R, Lazicki A, Marshall M C, Polsin D N, Zaghoo M, Millot M, Collins G W
Laboratory for Laser Energetics, Rochester, New York 14623, USA.
Department of Physics, University of Rochester, Rochester, New York 14611, USA.
Phys Rev Lett. 2020 Oct 16;125(16):165701. doi: 10.1103/PhysRevLett.125.165701.
Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_{2} at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_{2} samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^{3} (liquid) to 1.74 g/cm^{3} (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.
在绝缘到导电转变及以上状态下,对冲击压缩的二氧化碳进行状态方程(压力、密度、温度、内能)和反射率测量,揭示了对温稠密物质状态下简单分子系统化学性质的新见解。二氧化碳样品在金刚石对顶砧池中进行预压缩,在室温下将初始密度从1.35 g/cm³(液态)调节到1.74 g/cm³(固态),然后进行冲击压缩,压力高达1 TPa,温度高达93000 K。利用初始密度的变化来推断包括比热容和格鲁尼森系数在内的热力学导数,发现在所研究的最极端条件下存在一种复杂的键合和适度电离状态。