Lanthio Pharma, a MorphoSys AG Company, 9727 DL Groningen, The Netherlands.
Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.
Biochem Soc Trans. 2020 Oct 30;48(5):2195-2203. doi: 10.1042/BST20200427.
The conformation with which natural agonistic peptides interact with G protein-coupled receptor(s) (GPCR(s)) partly results from intramolecular interactions such as hydrogen bridges or is induced by ligand-receptor interactions. The conformational freedom of a peptide can be constrained by intramolecular cross-links. Conformational constraints enhance the receptor specificity, may lead to biased activity and confer proteolytic resistance to peptidic GPCR agonists. Chemical synthesis allows to introduce a variety of cross-links into a peptide and is suitable for bulk production of relatively simple lead peptides. Lanthionines are thioether bridged alanines of which the two alanines can be introduced at different distances in chosen positions in a peptide. Thioether bridges are much more stable than disulfide bridges. Biosynthesis of lanthionine-constrained peptides exploiting engineered Gram-positive or Gram-negative bacteria that contain lanthionine-introducing enzymes constitutes a convenient method for discovery of lanthionine-stabilized GPCR agonists. The presence of an N-terminal leader peptide enables dehydratases to dehydrate serines and threonines in the peptide of interest after which a cyclase can couple the formed dehydroamino acids to cysteines forming (methyl)lanthionines. The leader peptide also guides the export of the formed lanthionine-containing precursor peptide out of Gram-positive bacteria via a lanthipeptide transporter. An engineered cleavage site in the C-terminus of the leader peptide allows to cleave off the leader peptide yielding the modified peptide of interest. Lanthipeptide GPCR agonists are an emerging class of therapeutics of which a few examples have demonstrated high efficacy in animal models of a variety of diseases. One lanthipeptide GPCR agonist has successfully passed clinical Phase Ia.
天然激动肽与 G 蛋白偶联受体 (GPCR) 相互作用的构象部分源于分子内相互作用,如氢键,或由配体-受体相互作用诱导。肽的构象自由度可以受到分子内交联的限制。构象约束增强了受体特异性,可能导致偏向活性,并赋予肽 GPCR 激动剂对蛋白水解的抗性。化学合成允许在肽中引入多种交联,并且适合相对简单的先导肽的批量生产。硫醚桥是硫醚桥接的丙氨酸,其中两个丙氨酸可以在肽中的选定位置以不同的距离引入。硫醚桥比二硫键稳定得多。利用含有硫醚引入酶的工程化革兰氏阳性或革兰氏阴性细菌来合成硫醚约束肽的生物合成是发现硫醚稳定的 GPCR 激动剂的一种方便方法。N 端前导肽的存在使脱水酶能够在感兴趣的肽中使丝氨酸和苏氨酸脱水,然后环化酶可以将形成的脱氢氨基酸偶联到半胱氨酸上形成(甲基)硫醚。前导肽还通过硫肽转运蛋白引导形成的含硫醚的前体肽从革兰氏阳性细菌中输出。前导肽 C 端的工程化切割位点允许切割掉前导肽,得到感兴趣的修饰肽。硫肽 GPCR 激动剂是一类新兴的治疗药物,其中一些已在多种疾病的动物模型中证明具有很高的疗效。一种硫肽 GPCR 激动剂已成功通过临床 I 期。