Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, SIMGEO UB-CSIC, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona (Spain); Centres Científics i Tecnològics, Universitat de Barcelona (UB), C/Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain).
Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Diagonal 645, 08028 Barcelona (Spain).
Water Res. 2021 Jan 1;188:116537. doi: 10.1016/j.watres.2020.116537. Epub 2020 Oct 19.
Nitrate (NO) pollution adversely impacts surface and groundwater quality. In recent decades, many countries have implemented measures to control and reduce anthropogenic nitrate pollution in water resources. However, to effectively implement mitigation measures at the origin of pollution,the source of nitrate must first be identified. The stable nitrogen and oxygen isotopes of NO (ẟN and ẟO) have been widely used to identify NO sources in water, and their combination with other stable isotopes such as boron (ẟB) has further improved nitrate source identification. However, the use of these datasets has been limited due to their overlapping isotopic ranges, mixing between sources, and/or isotopic fractionation related to physicochemical processes. To overcome these limitations, we combined a multi-isotopic analysis with fecal indicator bacteria (FIB) and microbial source tracking (MST) techniques to improve nitrate origin identification. We applied this novel approach on 149 groundwater and 39 surface water samples distributed across Catalonia (NE Spain). A further 18 wastewater treatment plant (WWTP) effluents were also isotopically and biologically characterized. The groundwater and surface water results confirm that isotopes and MST analyses were complementary and provided more reliable information on the source of nitrate contamination. The isotope and MST data agreed or partially agreed in most of the samples evaluated (79 %). This approach was especially useful for nitrate pollution tracing in surface water but was also effective in groundwater samples influenced by organic nitrate pollution. Furthermore, the findings from the WWTP effluents suggest that the use of literature values to define the isotopic ranges of anthropogenic sources can constrain interpretations. We therefore recommend that local sources be isotopically characterized for accurate interpretations. For instance, the detection of MST inferred animal influence in some WWTP effluents, but the ẟB values were higher than those reported in the literature for wastewater. The results of this study have been used by local water authorities to review uncertain cases and identify new vulnerable zones in Catalonia according to the European Nitrate Directive (91/676/CEE).
硝酸盐(NO)污染对地表水和地下水水质造成不利影响。近几十年来,许多国家已采取措施控制和减少水资源中的人为硝酸盐污染。然而,要在污染源头有效实施缓解措施,首先必须确定硝酸盐的来源。水中硝酸盐的稳定氮和氧同位素(ẟN 和 ẟO)已被广泛用于识别硝酸盐的来源,而与硼(ẟB)等其他稳定同位素的结合则进一步提高了硝酸盐源的识别能力。然而,由于这些数据集的同位素范围重叠、来源混合以及与物理化学过程相关的同位素分馏,这些数据集的应用受到了限制。为了克服这些限制,我们结合多同位素分析与粪便指示细菌(FIB)和微生物源追踪(MST)技术,以改善硝酸盐的起源识别。我们将这种新方法应用于分布在加泰罗尼亚(西班牙东北部)的 149 个地下水和 39 个地表水样本。还对 18 个污水处理厂(WWTP)的出水进行了同位素和生物特征分析。地下水和地表水的结果证实,同位素和 MST 分析是互补的,为硝酸盐污染来源提供了更可靠的信息。在评估的大多数样本中(79%),同位素和 MST 数据是一致或部分一致的。这种方法特别适用于地表水的硝酸盐污染追踪,但对于受有机硝酸盐污染影响的地下水样本也同样有效。此外,从 WWTP 出水中得出的结论表明,使用文献值来定义人为源的同位素范围可能会限制解释。因此,我们建议对当地来源进行同位素特征分析,以进行准确的解释。例如,在一些 WWTP 出水中检测到 MST 推断的动物影响,但 ẟB 值高于文献中报道的废水值。本研究的结果已被当地水管理部门用于审查不确定的案例,并根据欧洲硝酸盐指令(91/676/EEC)确定加泰罗尼亚新的脆弱区。