Varadarajan Adithi R, Allan Raymond N, Valentin Jules D P, Castañeda Ocampo Olga E, Somerville Vincent, Pietsch Franziska, Buhmann Matthias T, West Jonathan, Skipp Paul J, van der Mei Henny C, Ren Qun, Schreiber Frank, Webb Jeremy S, Ahrens Christian H
Research Group Molecular Diagnostics Genomics & Bioinformatics, Agroscope and SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland.
School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
NPJ Biofilms Microbiomes. 2020 Oct 30;6(1):46. doi: 10.1038/s41522-020-00154-8.
Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms.
铜绿假单胞菌MPAO1是这种重要临床病原体广泛使用的转座子突变体文库的亲本菌株。在此,我们验证了一个模型系统,以鉴定参与生物膜生长和生物膜相关抗生素耐药性的基因。我们的模型采用基因组学驱动的工作流程来组装完整的MPAO1基因组,通过与PAO1参考菌株的比较基因组学鉴定独特和保守的基因,并通过蛋白质基因组学鉴定现有组装中遗漏的基因。在200多个独特的MPAO1基因中,我们鉴定出6个一般必需基因,这些基因在将公共Tn-seq数据集与PAO1进行比对时被忽视,其中包括一种抗毒素。基因组数据与来自实验工作流程的表型数据相结合,该工作流程使用用户友好的基于软光刻的微流控流动室进行生物膜生长,并在微量滴定板中使用Tn突变体文库进行筛选。该筛选鉴定出了迄今未知的参与生物膜生长和抗生素耐药性的基因。在三个实验室使用流动室进行的实验提供了关于铜绿假单胞菌生物膜的可重复数据,并验证了已知基因和Tn突变体筛选中鉴定出的基因的功能。浮游细胞与生物膜的差异蛋白质丰度数据证实了已知影响生物膜形成的候选基因、VI型分泌系统的结构和分泌蛋白的上调,并为一些遗漏的MPAO1基因提供了蛋白质基因组学证据。这个集成的、广泛适用的模型有望改善对生物膜形成、抗菌耐受性和生物膜中耐药性进化的机制理解。