Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA.
J Nutr Biochem. 2021 Feb;88:108542. doi: 10.1016/j.jnutbio.2020.108542. Epub 2020 Oct 29.
Hypothalamic inflammation has been linked to various aspects of central metabolic dysfunction and diseases in humans, including hyperphagia, altered energy expenditure, and obesity. We previously reported that loss of β-carotene oxygenase 2 (BCO2), a mitochondrial inner membrane protein, causes the alteration of the hypothalamic metabolome, low-grade inflammation, and an increase in food intake in mice at an early age, e.g., 3-6 weeks. Here, we determined the extent to which the deficiency of BCO2 induces hypothalamic inflammation in BCO2 knockout mice. Mitochondrial proteomics, electron microscopy, and immunoblotting were used to assess the changes in hypothalamic mitochondrial dynamics and mitochondrial DNA sensing and signaling. The results showed that deficiency of BCO2 altered hypothalamic mitochondrial proteome and respiratory supercomplex assembly by enhancing the expression of NADH:ubiquinone oxidoreductase subunit A11 protein and improved cardiolipin synthesis. BCO2 deficiency potentiated mitochondrial fission but suppressed mitophagy and mitochondrial biogenesis. Furthermore, deficiency of BCO2 resulted in inactivation of mitochondrial MnSOD enzyme, excessive production of reactive oxygen species, and elevation of protein levels of stimulator of interferon genes (STING) and interferon regulatory factor 3 (IRF3) in the hypothalamus. The data suggest that BCO2 is essential for hypothalamic mitochondrial dynamics. BCO2 deficiency induces mitochondrial fragmentation and mitochondrial oxidative stress, which may lead to mitochondrial DNA release into the cytosol and subsequently sensing by activation of the STING-IRF3 signaling pathway in the mouse hypothalamus.
下丘脑炎症与人类中枢代谢功能障碍和疾病的各个方面有关,包括食欲过盛、能量消耗改变和肥胖。我们之前报道过,β-胡萝卜素加氧酶 2(BCO2)的缺失,一种线粒体内膜蛋白,会导致下丘脑代谢组发生改变、低度炎症和食物摄入量增加,这种情况早在小鼠 3-6 周龄时就已经出现。在这里,我们确定了 BCO2 缺乏在多大程度上会引起 BCO2 敲除小鼠的下丘脑炎症。线粒体蛋白质组学、电子显微镜和免疫印迹用于评估下丘脑线粒体动力学和线粒体 DNA 感应和信号的变化。结果表明,BCO2 的缺乏通过增强 NADH:泛醌氧化还原酶亚基 A11 蛋白的表达改变了下丘脑线粒体蛋白质组和呼吸超级复合物的组装,并改善了心磷脂的合成。BCO2 缺乏增强了线粒体裂变,但抑制了线粒体自噬和线粒体生物发生。此外,BCO2 的缺乏导致线粒体 MnSOD 酶失活、活性氧的过度产生以及下丘脑刺激干扰素基因(STING)和干扰素调节因子 3(IRF3)蛋白水平的升高。数据表明,BCO2 是下丘脑线粒体动力学所必需的。BCO2 缺乏诱导线粒体碎片化和线粒体氧化应激,这可能导致线粒体 DNA 释放到细胞质中,并随后通过激活小鼠下丘脑的 STING-IRF3 信号通路来感应。