Suppr超能文献

多尺度模拟研究聚糖屏蔽对药物与流感神经氨酸酶结合的影响。

Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase.

作者信息

Seitz Christian, Casalino Lorenzo, Konecny Robert, Huber Gary, Amaro Rommie E, McCammon J Andrew

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.

出版信息

Biophys J. 2020 Dec 1;119(11):2275-2289. doi: 10.1016/j.bpj.2020.10.024. Epub 2020 Oct 31.

Abstract

Influenza neuraminidase is an important drug target. Glycans are present on neuraminidase and are generally considered to inhibit antibody binding via their glycan shield. In this work, we studied the effect of glycans on the binding kinetics of antiviral drugs to the influenza neuraminidase. We created all-atom in silico systems of influenza neuraminidase with experimentally derived glycoprofiles consisting of four systems with different glycan conformations and one system without glycans. Using Brownian dynamics simulations, we observe a two- to eightfold decrease in the rate of ligand binding to the primary binding site of neuraminidase due to the presence of glycans. These glycans are capable of covering much of the surface area of neuraminidase, and the ligand binding inhibition is derived from glycans sterically occluding the primary binding site on a neighboring monomer. Our work also indicates that drugs preferentially bind to the primary binding site (i.e., the active site) over the secondary binding site, and we propose a binding mechanism illustrating this. These results help illuminate the complex interplay between glycans and ligand binding on the influenza membrane protein neuraminidase.

摘要

流感神经氨酸酶是一个重要的药物靶点。神经氨酸酶上存在聚糖,通常认为这些聚糖通过其聚糖屏蔽作用抑制抗体结合。在这项工作中,我们研究了聚糖对抗病毒药物与流感神经氨酸酶结合动力学的影响。我们创建了流感神经氨酸酶的全原子计算机模拟系统,其具有通过实验得出的糖基化图谱,包括四个具有不同聚糖构象的系统和一个无聚糖的系统。使用布朗动力学模拟,我们观察到由于聚糖的存在,配体与神经氨酸酶主要结合位点的结合速率降低了两到八倍。这些聚糖能够覆盖神经氨酸酶的大部分表面积,并且配体结合抑制源自聚糖在空间上阻碍相邻单体上的主要结合位点。我们的工作还表明,药物优先结合主要结合位点(即活性位点)而非次要结合位点,并且我们提出了一种说明这一情况的结合机制。这些结果有助于阐明聚糖与流感膜蛋白神经氨酸酶上配体结合之间的复杂相互作用。

相似文献

1
Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase.
Biophys J. 2020 Dec 1;119(11):2275-2289. doi: 10.1016/j.bpj.2020.10.024. Epub 2020 Oct 31.
2
The Mechanism by which 146-N-Glycan Affects the Active Site of Neuraminidase.
PLoS One. 2015 Aug 12;10(8):e0135487. doi: 10.1371/journal.pone.0135487. eCollection 2015.
5
Glycan binding and specificity of viral influenza neuraminidases by classical molecular dynamics and replica exchange molecular dynamics simulations.
J Biomol Struct Dyn. 2019 Aug;37(13):3354-3365. doi: 10.1080/07391102.2018.1514326. Epub 2018 Nov 25.
7
Structural basis for influence of viral glycans on ligand binding by influenza hemagglutinin.
Biophys J. 2008 Oct;95(7):L48-50. doi: 10.1529/biophysj.108.141507. Epub 2008 Jul 18.

引用本文的文献

1
Isoform-specific N-linked glycosylation of NaV channel α-subunits alters β-subunit binding sites.
J Gen Physiol. 2025 Jan 6;157(1). doi: 10.1085/jgp.202413609. Epub 2024 Dec 16.
2
Anti-neuraminidase immunity in the combat against influenza.
Expert Rev Vaccines. 2024 Jan-Dec;23(1):474-484. doi: 10.1080/14760584.2024.2343689. Epub 2024 Apr 23.
3
Glycosylation and Crowded Membrane Effects on Influenza Neuraminidase Stability and Dynamics.
J Phys Chem Lett. 2023 Nov 9;14(44):9926-9934. doi: 10.1021/acs.jpclett.3c02524. Epub 2023 Oct 30.
4
Breathing and Tilting: Mesoscale Simulations Illuminate Influenza Glycoprotein Vulnerabilities.
ACS Cent Sci. 2022 Dec 28;8(12):1646-1663. doi: 10.1021/acscentsci.2c00981. Epub 2022 Dec 8.
5
Glycosylation and the global virome.
Mol Ecol. 2023 Jan;32(1):37-44. doi: 10.1111/mec.16731. Epub 2022 Oct 21.
6
Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities.
bioRxiv. 2022 Aug 7:2022.08.02.502576. doi: 10.1101/2022.08.02.502576.
7
Binding mechanism of oseltamivir and influenza neuraminidase suggests perspectives for the design of new anti-influenza drugs.
PLoS Comput Biol. 2022 Jul 28;18(7):e1010343. doi: 10.1371/journal.pcbi.1010343. eCollection 2022 Jul.
8
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
9
Second sialic acid-binding site of influenza A virus neuraminidase: binding receptors for efficient release.
FEBS J. 2021 Oct;288(19):5598-5612. doi: 10.1111/febs.15668. Epub 2020 Dec 28.
10
Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein.
ACS Cent Sci. 2020 Oct 28;6(10):1722-1734. doi: 10.1021/acscentsci.0c01056. Epub 2020 Sep 23.

本文引用的文献

1
Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein.
ACS Cent Sci. 2020 Oct 28;6(10):1722-1734. doi: 10.1021/acscentsci.0c01056. Epub 2020 Sep 23.
2
Vulnerabilities in coronavirus glycan shields despite extensive glycosylation.
Nat Commun. 2020 May 27;11(1):2688. doi: 10.1038/s41467-020-16567-0.
3
Site-specific glycan analysis of the SARS-CoV-2 spike.
Science. 2020 Jul 17;369(6501):330-333. doi: 10.1126/science.abb9983. Epub 2020 May 4.
4
Brownian Dynamics Simulations of Biological Molecules.
Trends Chem. 2019 Nov;1(8):727-738. doi: 10.1016/j.trechm.2019.07.008. Epub 2019 Aug 28.
5
Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV).
Virusdisease. 2020 Mar;31(1):13-21. doi: 10.1007/s13337-020-00571-5. Epub 2020 Mar 5.
6
Mesoscale All-Atom Influenza Virus Simulations Suggest New Substrate Binding Mechanism.
ACS Cent Sci. 2020 Feb 26;6(2):189-196. doi: 10.1021/acscentsci.9b01071. Epub 2020 Feb 19.
8
Exploitation of glycosylation in enveloped virus pathobiology.
Biochim Biophys Acta Gen Subj. 2019 Oct;1863(10):1480-1497. doi: 10.1016/j.bbagen.2019.05.012. Epub 2019 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验