Seitz Christian, Casalino Lorenzo, Konecny Robert, Huber Gary, Amaro Rommie E, McCammon J Andrew
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
Biophys J. 2020 Dec 1;119(11):2275-2289. doi: 10.1016/j.bpj.2020.10.024. Epub 2020 Oct 31.
Influenza neuraminidase is an important drug target. Glycans are present on neuraminidase and are generally considered to inhibit antibody binding via their glycan shield. In this work, we studied the effect of glycans on the binding kinetics of antiviral drugs to the influenza neuraminidase. We created all-atom in silico systems of influenza neuraminidase with experimentally derived glycoprofiles consisting of four systems with different glycan conformations and one system without glycans. Using Brownian dynamics simulations, we observe a two- to eightfold decrease in the rate of ligand binding to the primary binding site of neuraminidase due to the presence of glycans. These glycans are capable of covering much of the surface area of neuraminidase, and the ligand binding inhibition is derived from glycans sterically occluding the primary binding site on a neighboring monomer. Our work also indicates that drugs preferentially bind to the primary binding site (i.e., the active site) over the secondary binding site, and we propose a binding mechanism illustrating this. These results help illuminate the complex interplay between glycans and ligand binding on the influenza membrane protein neuraminidase.
流感神经氨酸酶是一个重要的药物靶点。神经氨酸酶上存在聚糖,通常认为这些聚糖通过其聚糖屏蔽作用抑制抗体结合。在这项工作中,我们研究了聚糖对抗病毒药物与流感神经氨酸酶结合动力学的影响。我们创建了流感神经氨酸酶的全原子计算机模拟系统,其具有通过实验得出的糖基化图谱,包括四个具有不同聚糖构象的系统和一个无聚糖的系统。使用布朗动力学模拟,我们观察到由于聚糖的存在,配体与神经氨酸酶主要结合位点的结合速率降低了两到八倍。这些聚糖能够覆盖神经氨酸酶的大部分表面积,并且配体结合抑制源自聚糖在空间上阻碍相邻单体上的主要结合位点。我们的工作还表明,药物优先结合主要结合位点(即活性位点)而非次要结合位点,并且我们提出了一种说明这一情况的结合机制。这些结果有助于阐明聚糖与流感膜蛋白神经氨酸酶上配体结合之间的复杂相互作用。