Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States.
Clinical Pharmacology and Pharmacometrics, Bristol Myers Squibb, Princeton, New Jersey 08536, United States.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
尽管在过去的两年中付出了巨大的努力,但我们对严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)、病毒-宿主相互作用、免疫反应、毒力、传播和进化的理解仍然非常有限。这种局限性需要进一步深入研究。由于成本低、效率高且不受安全和伦理限制,计算研究已成为抗击 2019 年冠状病毒病(COVID-19)不可或缺的组成部分。此外,通过整合大量病毒序列的基因分型、蛋白质-蛋白质相互作用的生物物理建模、深度突变数据、深度学习和先进的数学,可以揭示 SARS-CoV-2 的全球进化和传播机制,而不是通过单个实验发现。关于 SARS-CoV-2 及其相关药物、疫苗、抗体和诊断学的分子建模、模拟和预测的文献如海啸般涌现。为了向读者快速更新该文献,我们提出了一种全面而系统的以方法为中心的综述。讨论了分子生物物理学、生物信息学、化学信息学、机器学习和数学等方面。这篇综述将有助于那些希望为 SARS-CoV-2 研究做出贡献的研究人员,以及对该领域现状感兴趣的人员。