Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana.
Department of Biomedical Engineering, University of Rochester, Rochester, New York.
Biophys J. 2020 Dec 1;119(11):2190-2204. doi: 10.1016/j.bpj.2020.10.025. Epub 2020 Oct 30.
We present an analytical hyperelastic constitutive model of the red blood cell (erythrocyte) membrane based on recently improved characterizations of density and microscopic structure of its spectrin network from proteomics and cryo-electron tomography. The model includes distributions of both orientations and natural lengths of spectrin and updated copy numbers of proteins. By applying finite deformation to the spectrin network, we obtain the total free energy and stresses in terms of invariants of shear and area deformation. We generalize an expression of the initial shear modulus, which is independent of the number of molecular orientations within the network and also derive a simplified version of the model. We apply the model and its simplified version to analyze micropipette aspiration computationally and analytically and explore the effect of local cytoskeletal density change. We also explore the discrepancies among shear modulus values measured using different experimental techniques reported in the literature. We find that the model exhibits hardening behavior and can explain many of these discrepancies. Moreover, we find that the distribution of natural lengths plays a crucial role in the hardening behavior when the correct copy numbers of proteins are used. The initial shear modulus values we obtain using our current model (5.9-15.6 pN/μm) are close to the early estimates (6-9 pN/μm). This new, to our knowledge, constitutive model establishes a direct connection between the molecular structure of spectrin networks and constitutive laws and also defines a new picture of a much denser spectrin network than assumed in prior studies.
我们提出了一种基于近期对血影蛋白网络密度和微观结构的蛋白质组学和冷冻电子断层成像技术改进的红细胞(红血球)膜分析超弹性本构模型。该模型包括血影蛋白的取向和自然长度以及蛋白拷贝数的分布。通过对血影蛋白网络施加有限变形,我们得到了总自由能和剪应变和面积变形不变量的应力。我们推广了初始剪切模量的表达式,该表达式与网络内分子取向的数量无关,还推导出了模型的简化版本。我们应用该模型及其简化版本进行了计算和分析微管吸吮,并探讨了局部细胞骨架密度变化的影响。我们还探讨了文献中报道的不同实验技术测量的剪切模量值之间的差异。我们发现,该模型表现出硬化行为,并可以解释其中的许多差异。此外,我们发现,当使用正确的蛋白拷贝数时,自然长度分布在硬化行为中起着至关重要的作用。我们使用当前模型获得的初始剪切模量值(5.9-15.6 pN/μm)接近早期估计值(6-9 pN/μm)。这个新的本构模型,据我们所知,在分子结构和本构律之间建立了直接联系,并定义了一个比之前研究中假设的密度更高的血影蛋白网络的新图景。