Suppr超能文献

使用全卷积神经网络评估 native 和 contrast-enhanced T1-mapping 心血管磁共振成像中的全自动心肌分割技术。

Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.

机构信息

Department of Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive, Mackenzie 4456, Ottawa, ON, K1S5B6, Canada.

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, K1S 5B6, Canada.

出版信息

Med Phys. 2021 Jan;48(1):215-226. doi: 10.1002/mp.14574. Epub 2020 Dec 1.

Abstract

PURPOSE

T1-mapping cardiac magnetic resonance (CMR) imaging permits noninvasive quantification of myocardial fibrosis (MF); however, manual delineation of myocardial boundaries is time-consuming and introduces user-dependent variability for such measurements. In this study, we compare several automated pipelines for myocardial segmentation of the left ventricle (LV) in native and contrast-enhanced T1-maps using fully convolutional neural networks (CNNs).

METHODS

Sixty patients with known MF across three distinct cardiomyopathy states (20 ischemic (ICM), 20 dilated (DCM), and 20 hypertrophic (HCM)) underwent a standard CMR imaging protocol inclusive of cinematic (CINE), late gadolinium enhancement (LGE), and pre/post-contrast T1 imaging. Native and contrast-enhanced T1-mapping was performed using a shortened modified Look-Locker imaging (shMOLLI) technique at the basal, mid-level, and/or apex of the LV. Myocardial segmentations in native and post-contrast T1-maps were performed using three state-of-the-art CNN-based methods: standard U-Net, densely connected neural networks (Dense Nets), and attention networks (Attention Nets) after dividing the dataset using fivefold cross validation. These direct segmentation techniques were compared to an alternative registration-based segmentation method, wherein spatially corresponding CINE images are segmented automatically using U-Net, and a nonrigid registration technique transforms and propagates CINE contours to the myocardial regions of T1-maps. The methodologies were validated in 125 native and 100 contrast-enhanced T1-maps using standard segmentation accuracy metrics. Pearson correlation coefficient r and Bland-Altman analysis were used to compare the computed global T1 values derived by manual, U-Net, and CINE registration methodologies.

RESULTS

The U-Net-based method yielded optimal results in myocardial segmentation of native, contrast-enhanced, and CINE images compared to Dense Nets and Attention Nets. The direct U-Net-based method outperformed the CINE registration-based method in native T1-maps, yielding Dice similarity coefficient (DSC) of 82.7 ± 12% compared to 81.4 ± 6.9% (P < 0.0001). However, in contrast-enhanced T1-maps, the CINE-registration-based method outperformed direct U-Net segmentation, yielding DSC of 77.0 ± 9.6% vs 74.2 ± 18% across all patient groups (P = 0.0014) and specifically 73.2 ± 7.3% vs 65.5 ± 18% in the ICM patient group. High linear correlation of global T1 values was demonstrated in Pearson analysis of the U-Net-based technique and the CINE-registration technique in both native T1-maps (r = 0.93, P < 0.0001 and r = 0.87, P < 0.0001, respectively) and contrast-enhanced T1-maps (r = 0.93, P < 0.0001 and r = 0.98, P < 0.0001, respectively).

CONCLUSIONS

The direct U-Net-based myocardial segmentation technique provided accurate, fully automated segmentations in native and contrast-enhanced T1-maps. Myocardial borders can alternatively be segmented from spatially matched CINE images and applied to T1-maps via deformation and propagation through a modality-independent neighborhood descriptor (MIND). The direct U-Net approach is more efficient in myocardial segmentation of native T1-maps and eliminates cross-technique dependence. However, the CINE-registration-based technique may be more appropriate for contrast-enhanced T1-maps and/or for patients with dense regions of replacement fibrosis, such as those with ICM.

摘要

目的

心脏磁共振(CMR)成像中的 T1 映射可实现心肌纤维化(MF)的无创定量;然而,手动描绘心肌边界既耗时又会导致此类测量的用户依赖性变异性。在这项研究中,我们比较了几种使用全卷积神经网络(CNN)的左心室(LV)在原生和对比增强 T1 图中进行心肌分割的自动流水线。

方法

60 名患有三种不同心肌病状态(20 名缺血性(ICM)、20 名扩张性(DCM)和 20 名肥厚性(HCM))的患者接受了标准 CMR 成像方案,包括电影(CINE)、晚期钆增强(LGE)和原生和对比增强 T1 成像。使用缩短的改良 Look-Locker 成像(shMOLLI)技术在 LV 的基底、中层和/或心尖进行原生和对比增强 T1 映射。使用三种最先进的基于 CNN 的方法:标准 U-Net、密集连接神经网络(Dense Nets)和注意力网络(Attention Nets)进行原生和对比增强 T1 映射的心肌分割,方法是在使用五折交叉验证分割数据集后。将这些直接分割技术与替代的基于配准的分割方法进行比较,其中自动使用 U-Net 对空间对应的 CINE 图像进行分割,并且非刚性配准技术将 CINE 轮廓转换并传播到 T1 映射的心肌区域。使用标准分割准确性度量标准在 125 个原生和 100 个对比增强 T1 图中验证了这些方法。使用 Pearson 相关系数 r 和 Bland-Altman 分析比较了手动、U-Net 和 CINE 配准方法得出的计算全局 T1 值。

结果

与 Dense Nets 和 Attention Nets 相比,U-Net 方法在原生、对比增强和 CINE 图像的心肌分割中产生了最佳结果。直接的 U-Net 方法在原生 T1 图中优于 CINE 配准方法,Dice 相似系数(DSC)为 82.7±12%,而 81.4±6.9%(P<0.0001)。然而,在对比增强的 T1 图中,CINE 配准方法优于直接的 U-Net 分割,在所有患者组中 DSC 为 77.0±9.6%,而 74.2±18%(P=0.0014),特别是在 ICM 患者组中为 73.2±7.3%,而 65.5±18%。在 Pearson 分析中,U-Net 技术和 CINE 配准技术在原生 T1 图(r=0.93,P<0.0001 和 r=0.87,P<0.0001)和对比增强 T1 图(r=0.93,P<0.0001 和 r=0.98,P<0.0001)中均表现出高度线性相关性。

结论

直接的基于 U-Net 的心肌分割技术在原生和对比增强 T1 图中提供了准确、全自动的分割。心肌边界也可以从空间匹配的 CINE 图像中分割出来,并通过变形和传播到 T1 映射通过模态独立邻域描述符(MIND)来应用。直接的 U-Net 方法在原生 T1 图的心肌分割中更有效,并且消除了跨技术依赖性。然而,CINE 配准方法可能更适合对比增强 T1 图和/或具有密集替换纤维化区域的患者,例如患有 ICM 的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验