从序列到信息。

From sequence to information.

机构信息

Institute of Quantitative and Theoretical Biology, CEPLAS, Heinrich-Heine University Düsseldorf, Germany.

Cluster of Excellence on Plant Sciences, CEPLAS, Heinrich-Heine University Düsseldorf, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Dec 21;375(1814):20190448. doi: 10.1098/rstb.2019.0448. Epub 2020 Nov 2.

Abstract

Today massive amounts of sequenced metagenomic and metatranscriptomic data from different ecological niches and environmental locations are available. Scientific progress depends critically on methods that allow extracting useful information from the various types of sequence data. Here, we will first discuss types of information contained in the various flavours of biological sequence data, and how this information can be interpreted to increase our scientific knowledge and understanding. We argue that a mechanistic understanding of biological systems analysed from different perspectives is required to consistently interpret experimental observations, and that this understanding is greatly facilitated by the generation and analysis of dynamic mathematical models. We conclude that, in order to construct mathematical models and to test mechanistic hypotheses, time-series data are of critical importance. We review diverse techniques to analyse time-series data and discuss various approaches by which time-series of biological sequence data have been successfully used to derive and test mechanistic hypotheses. Analysing the bottlenecks of current strategies in the extraction of knowledge and understanding from data, we conclude that combined experimental and theoretical efforts should be implemented as early as possible during the planning phase of individual experiments and scientific research projects. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.

摘要

如今,来自不同生态位和环境地点的大量测序宏基因组学和宏转录组学数据已经可用。科学进展取决于能够从各种类型的序列数据中提取有用信息的方法。在这里,我们将首先讨论各种类型的生物序列数据中包含的信息类型,以及如何解释这些信息以增加我们的科学知识和理解。我们认为,需要从不同角度对生物系统进行机制理解,才能一致地解释实验观察结果,而生成和分析动态数学模型则极大地促进了这种理解。我们得出的结论是,为了构建数学模型和检验机制假设,时间序列数据至关重要。我们回顾了分析时间序列数据的各种技术,并讨论了成功用于推导和检验机制假设的各种生物序列数据时间序列的方法。分析从数据中提取知识和理解的当前策略的瓶颈,我们得出的结论是,在单个实验和科学研究项目的规划阶段,就应该尽早实施结合实验和理论的努力。本文是“海洋保护的综合研究视角”主题特刊的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea1f/7662195/636b6c71b11b/rstb20190448-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索