Suppr超能文献

利用 QTL 区域的序列变异可提高法国萨能奶山羊基因组评估的准确性。

Using sequence variants of a QTL region improves the accuracy of genomic evaluation in French Saanen goats.

机构信息

GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France.

GenPhySE, Université de Toulouse, INRAE, ENVT, F-31326 Castanet-Tolosan, France.

出版信息

J Dairy Sci. 2021 Jan;104(1):588-601. doi: 10.3168/jds.2020-18837. Epub 2020 Oct 31.

Abstract

The enhanced availability of sequence data in livestock provides an opportunity for more accurate predictions in routine genomic evaluations. Such evaluations would therefore no longer rely only on the linkage disequilibrium between a chip marker and the causal mutation. The objective of this study was to assess the usefulness of sequence data in Saanen goats (n = 33) to better capture a quantitative trait locus (QTL) on chromosome 19 (CHI19) and improve the accuracy of predictions for 3 milk production traits, 5 type traits, and somatic cell scores. All 1,207 50K genotypes were imputed to the sequence level. Four scenarios, each using a subset of CHI19 imputed variants, were then tested. Sequence-derived information included all CHI19 variants (529,576), all variants in the QTL region (22,269), 178 variants selected in the QTL region and added to an updated chip, or 178 randomly selected variants on CHI19. Two genomic evaluation models were applied: single-step genomic BLUP and weighted single-step genomic BLUP. All scenarios were compared with single-step genomic BLUP using 50K genotypes. Best overall results were obtained using single-step genomic BLUP on 50K genotypes completed with all variants in the QTL region of chromosome 19 (6.2% average increase in accuracy for 9 traits) with the highest accuracy gain for fat yield (17.9%), significant increases for milk (13.7%) and protein yields (12.5%), and type traits associated with CHI19. Despite its association with the QTL region of chromosome 19, the somatic cell score showed decreased accuracy in every alternative scenario. Using all CHI19 variants led to an overall decrease of 4.8% in prediction accuracy. The updated chip was efficient and improved genomic evaluations by 3.1 to 6.4% on average, depending on the scenario. Indeed, information from only a few carefully selected variants increased accuracies for traits of interest when used in a single-step genomic BLUP model. In conclusion, using QTL region variants imputed from sequence data in single-step genomic evaluations represents a promising perspective for such evaluations in dairy goats. Furthermore, using only a limited number of selected variants in QTL regions, as available on SNP chip updates, significantly increases the accuracy for QTL-associated traits without deteriorating the evaluation accuracy for other traits. The latter approach is interesting, as it avoids time-consuming imputation and data formatting processes and provides reliable genotypes.

摘要

家畜序列数据可用性的提高为常规基因组评估中的更准确预测提供了机会。因此,此类评估将不再仅仅依赖于芯片标记与因果突变之间的连锁不平衡。本研究的目的是评估萨能奶山羊(n = 33)序列数据的有用性,以更好地捕获 19 号染色体(CHI19)上的数量性状位点(QTL),并提高 3 个产奶性状、5 个体型性状和体细胞评分的预测准确性。所有 1,207 个 50K 基因型都被内插至序列水平。然后测试了四个场景,每个场景都使用 CHI19 内插变体的子集。序列衍生信息包括 CHI19 所有变体(529,576 个)、QTL 区域的所有变体(22,269 个)、QTL 区域中选择的 178 个变体并添加到更新的芯片中,或 CHI19 上随机选择的 178 个变体。应用了两种基因组评估模型:一步法基因组 BLUP 和加权一步法基因组 BLUP。将所有场景与使用 50K 基因型的一步法基因组 BLUP 进行了比较。使用 CHI19 所有变体的最佳整体结果是使用 50K 基因型完成 CHI19 上 QTL 区域的所有变体的一步法基因组 BLUP 获得的(9 个性状的准确性平均提高 6.2%),脂肪产量的准确性提高最大(17.9%),牛奶(13.7%)和蛋白质产量(12.5%)显著提高,以及与 CHI19 相关的体型性状。尽管与 CHI19 上的 QTL 区域相关,但体细胞评分在每种替代方案中都显示出准确性降低。使用所有 CHI19 变体导致预测准确性总体下降 4.8%。更新的芯片效率很高,在不同的场景下平均提高基因组评估 3.1%至 6.4%。实际上,在单步基因组 BLUP 模型中使用少数经过精心选择的变体的信息就可以提高感兴趣性状的准确性。总之,在奶山羊的单步基因组评估中使用序列数据推断的 QTL 区域变体代表了一种很有前途的方法。此外,仅在 SNP 芯片更新中可用的 QTL 区域中使用少数选定的变体,就可以显著提高与 QTL 相关的性状的准确性,而不会降低其他性状的评估准确性。后一种方法很有趣,因为它避免了耗时的内插和数据格式处理过程,并提供了可靠的基因型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验