Chase Alison P, Kramer Sasha J, Haëntjens Nils, Boss Emmanuel S, Karp-Boss Lee, Edmondson Mimi, Graff Jason R
School of Marine Sciences University of Maine Orono Maine USA.
Interdepartmental Graduate Program in Marine Science University of California Santa Barbara Santa Barbara California USA.
Limnol Oceanogr Methods. 2020 Oct;18(10):570-584. doi: 10.1002/lom3.10385. Epub 2020 Aug 10.
Phytoplankton accessory pigments are commonly used to estimate phytoplankton size classes, particularly during development and validation of biogeochemical models and satellite ocean color-based algorithms. The diagnostic pigment analysis (DPA) is based on bulk measurements of pigment concentrations and relies on assumptions regarding the presence of specific pigments in different phytoplankton taxonomic groups. Three size classes are defined by the DPA: picoplankton, nanoplankton, and microplankton. Until now, the DPA has not been evaluated against an independent approach that provides phytoplankton size calculated on a per-cell basis. Automated quantitative cell imagery of microplankton and some nanoplankton, used in combination with conventional flow cytometry for enumeration of picoplankton and nanoplankton, provide a novel opportunity to perform an independent evaluation of the DPA. Here, we use a data set from the North Atlantic Ocean that encompasses all seasons and a wide range of chlorophyll concentrations (0.18-5.14 mg m). Results show that the DPA overestimates microplankton and picoplankton when compared to cytometry data, and subsequently underestimates the contribution of nanoplankton to total biomass. In contrast to the assumption made by the DPA that the microplankton size class is largely made up of diatoms and dinoflagellates, imaging-in-flow cytometry shows significant presence of diatoms and dinoflagellates in the nanoplankton size class. Additionally, chlorophyll is commonly attributed solely to picoplankton by the DPA, but Chl -containing phytoplankton are observed with imaging in both nanoplankton and microplankton size classes. We suggest revisions to the DPA equations and application of uncertainties when calculating size classes from diagnostic pigments.
浮游植物辅助色素通常用于估算浮游植物的大小类别,特别是在生物地球化学模型和基于卫星海洋颜色的算法的开发和验证过程中。诊断色素分析(DPA)基于色素浓度的总体测量,并依赖于不同浮游植物分类群中特定色素存在的假设。DPA定义了三个大小类别:微微型浮游生物、微型浮游生物和小型浮游生物。到目前为止,DPA尚未与一种独立的方法进行评估,该方法可提供基于单个细胞计算的浮游植物大小。将微型浮游生物和一些微型浮游生物的自动定量细胞成像与用于计数微微型浮游生物和微型浮游生物的传统流式细胞术相结合,为对DPA进行独立评估提供了新机会。在这里,我们使用了来自北大西洋的数据集,该数据集涵盖了所有季节和广泛的叶绿素浓度范围(0.18 - 5.14 mg m)。结果表明,与流式细胞术数据相比,DPA高估了小型浮游生物和微微型浮游生物,随后低估了微型浮游生物对总生物量的贡献。与DPA的假设相反,即小型浮游生物大小类别主要由硅藻和甲藻组成,流动式细胞成像显示在微型浮游生物大小类别中存在大量的硅藻和甲藻。此外,DPA通常仅将叶绿素 归因于微微型浮游生物,但在微型浮游生物和小型浮游生物大小类别中通过成像均观察到含有叶绿素 的浮游植物。我们建议对DPA方程进行修订,并在根据诊断色素计算大小类别时应用不确定性。