Laboratoire de Microbiologie, Géochimie et Ecologie Marines, CNRS UMR6117, Centre d'Océanologie de Marseille, Université de la Méditerranée, Case 901, 163 Avenue de Luminy, 13288, Marseille cedex 09, France.
Environ Monit Assess. 2011 Feb;173(1-4):1-16. doi: 10.1007/s10661-010-1365-z. Epub 2010 Mar 11.
Automated in situ flow cytometry, high-pressure liquid chromatography (HPLC), optical microscopy and fluorometry were combined to monitor phytoplankton over two summer periods (2005 and 2006). In 2006, temperature was higher and nutrients lower than in 2005, generating differences in the phytoplankton assemblages (i.e., abundance and structure). Pigment-size classes based on daily HPLC analysis provided evidence for higher proportions of picoplankton and nanoplankton with higher biomass in 2005 and a dominance of microplankton with lower biomass in 2006, the latter with lower specific diversity, as evidenced by weekly microscopy analyses. Total chlorophyll a estimations from fluorometry measurements recorded every 30 min were higher in 2005 than in 2006, as for the HPLC chlorophyll a concentrations. An automated in situ flow cytometer (Thyssen et al., J Plankton Res 30(9):1027-1040, 2008a) sampled seawater every 30 min. Data analysis yielded the resolution of seven clusters based on light scatter and fluorescence. In 2006, an increase in abundance of the largest cells was observed, confirming pigment and microscopy data. The results suggest that the ecosystem was on a constant renewing process in summer 2005 due to a strong wind event and on a highly productive and recycling way in summer 2006 due to stratification of the upper water layer. Automated submersible flow cytometry confirms to be a powerful tool providing high-resolution data by monitoring phytoplankton at the single cell level. This technology gives access to the shape of the light scatter and fluorescence signals generated by each cell passing through a laser beam and that are linked to size, structure and pigment content of the target cell. When combined with conventional techniques, it further improves our understanding of phytoplankton assemblages.
自动化原位流式细胞仪、高压液相色谱(HPLC)、光学显微镜和荧光计结合起来,在两个夏季(2005 年和 2006 年)监测浮游植物。2006 年,温度高于 2005 年,营养物低于 2005 年,导致浮游植物组合(即丰度和结构)出现差异。基于每日 HPLC 分析的色素-大小类群提供了证据,表明 2005 年有更高比例的微微型和纳米浮游植物,生物量更高,而 2006 年则以微浮游植物为主,生物量较低,后者的特异性多样性较低,这一点可以通过每周的显微镜分析得到证明。荧光计每 30 分钟记录一次的总叶绿素 a 估计值在 2005 年高于 2006 年,HPLC 叶绿素 a 浓度也是如此。一个自动化的原位流式细胞仪(Thyssen 等人,J Plankton Res 30(9):1027-1040, 2008a)每 30 分钟采集一次海水样本。数据分析产生了基于光散射和荧光的七个聚类的分辨率。2006 年,观察到最大细胞的丰度增加,证实了色素和显微镜数据。结果表明,由于强风事件,2005 年夏季生态系统处于不断更新的过程中,由于上覆水层的分层,2006 年夏季生态系统处于高生产力和再循环的状态。自动化潜水式流式细胞仪被证明是一种强大的工具,通过在单细胞水平上监测浮游植物,提供高分辨率的数据。该技术可以访问每个细胞通过激光束时产生的光散射和荧光信号的形状,这些信号与目标细胞的大小、结构和色素含量有关。当与传统技术结合使用时,它进一步提高了我们对浮游植物组合的理解。