Suppr超能文献

POTN:一个人类白细胞抗原-A2 免疫原性肽筛选模型及其在肿瘤抗原预测中的应用。

POTN: A Human Leukocyte Antigen-A2 Immunogenic Peptides Screening Model and Its Applications in Tumor Antigens Prediction.

机构信息

School of Life Sciences, Zhengzhou University, Zhengzhou, China.

School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China.

出版信息

Front Immunol. 2020 Oct 7;11:02193. doi: 10.3389/fimmu.2020.02193. eCollection 2020.

Abstract

Whole genome/exome sequencing data for tumors are now abundant, and many tumor antigens, especially mutant antigens (neoantigens), have been identified for cancer immunotherapy. However, only a small fraction of the peptides from these antigens induce cytotoxic T cell responses. Therefore, efficient methods to identify these antigenic peptides are crucial. The current models of major histocompatibility complex (MHC) binding and antigenic prediction are still inaccurate. In this study, 360 9-mer peptides with verified immunological activity were selected to construct a prediction of tumor neoantigen (POTN) model, an immunogenic prediction model specifically for the human leukocyte antigen-A2 allele. Based on the physicochemical properties of amino acids, such as the residue propensity, hydrophobicity, and organic solvent/water, we found that the predictive capability of POTN is superior to that of the prediction programs SYPEITHI, IEDB, and NetMHCpan 4.0. We used POTN to screen peptides for the cancer-testis antigen located on the X chromosome, and we identified several peptides that may trigger immunogenicity. We synthesized and measured the binding affinity and immunogenicity of these peptides and found that the accuracy of POTN is higher than that of NetMHCpan 4.0. Identifying the properties related to the T cell response or immunogenicity paves the way to understanding the MHC/peptide/T cell receptor complex. In conclusion, POTN is an efficient prediction model for screening high-affinity immunogenic peptides from tumor antigens, and thus provides useful information for developing cancer immunotherapy.

摘要

现在已经有大量的肿瘤全基因组/外显子测序数据,并且已经鉴定出许多肿瘤抗原,尤其是突变抗原(新抗原),用于癌症免疫治疗。然而,这些抗原中的肽只有一小部分能诱导细胞毒性 T 细胞反应。因此,识别这些抗原性肽的有效方法至关重要。目前的主要组织相容性复合体(MHC)结合和抗原预测模型仍然不够准确。在这项研究中,我们选择了 360 个具有验证免疫活性的 9 -mer 肽,构建了一个预测肿瘤新抗原(POTN)模型,这是一个专门针对人类白细胞抗原-A2 等位基因的免疫预测模型。基于氨基酸的理化性质,如残基倾向、疏水性和有机溶剂/水,我们发现 POTN 的预测能力优于 SYPEITHI、IEDB 和 NetMHCpan 4.0 等预测程序。我们使用 POTN 筛选位于 X 染色体上的癌症睾丸抗原的肽,鉴定出了一些可能引发免疫原性的肽。我们合成并测量了这些肽的结合亲和力和免疫原性,发现 POTN 的准确性高于 NetMHCpan 4.0。确定与 T 细胞反应或免疫原性相关的性质为理解 MHC/肽/T 细胞受体复合物铺平了道路。总之,POTN 是一种从肿瘤抗原中筛选高亲和力免疫原性肽的有效预测模型,为开发癌症免疫治疗提供了有用的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/621b/7579403/abb03a2fcf9d/fimmu-11-02193-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验