Suppr超能文献

基于细胞的分析揭示了T细胞识别的肿瘤抗原T细胞表位在预测和观察之间的强烈差异。

and cell-based analyses reveal strong divergence between prediction and observation of T-cell-recognized tumor antigen T-cell epitopes.

作者信息

Schmidt Julien, Guillaume Philippe, Dojcinovic Danijel, Karbach Julia, Coukos George, Luescher Immanuel

机构信息

Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.

Krankenhaus Nordwest, 60488 Frankfurt, Germany.

出版信息

J Biol Chem. 2017 Jul 14;292(28):11840-11849. doi: 10.1074/jbc.M117.789511. Epub 2017 May 23.

Abstract

Tumor exomes provide comprehensive information on mutated, overexpressed genes and aberrant splicing, which can be exploited for personalized cancer immunotherapy. Of particular interest are mutated tumor antigen T-cell epitopes, because neoepitope-specific T cells often are tumoricidal. However, identifying tumor-specific T-cell epitopes is a major challenge. A widely used strategy relies on initial prediction of human leukocyte antigen-binding peptides by algorithms, but the predictive power of this approach is unclear. Here, we used the human tumor antigen NY-ESO-1 (ESO) and the human leukocyte antigen variant HLA-A*0201 (A2) as a model and predicted the 41 highest-affinity, A2-binding 8-11-mer peptides and assessed their binding, kinetic complex stability, and immunogenicity in A2-transgenic mice and on peripheral blood mononuclear cells from ESO-vaccinated melanoma patients. We found that 19 of the peptides strongly bound to A2, 10 of which formed stable A2-peptide complexes and induced CD8 T cells in A2-transgenic mice. However, only 5 of the peptides induced cognate T cells in humans; these peptides exhibited strong binding and complex stability and contained multiple large hydrophobic and aromatic amino acids. These results were not predicted by algorithms and provide new clues to improving T-cell epitope identification. In conclusion, our findings indicate that only a small fraction of -predicted A2-binding ESO peptides are immunogenic in humans, namely those that have high peptide-binding strength and complex stability. This observation highlights the need for improving predictions of peptide immunogenicity.

摘要

肿瘤外显子组提供了有关突变、过表达基因和异常剪接的全面信息,这些信息可用于个性化癌症免疫治疗。特别令人感兴趣的是突变的肿瘤抗原T细胞表位,因为新表位特异性T细胞通常具有杀肿瘤作用。然而,识别肿瘤特异性T细胞表位是一项重大挑战。一种广泛使用的策略依赖于通过算法初步预测人类白细胞抗原结合肽,但这种方法的预测能力尚不清楚。在这里,我们以人类肿瘤抗原NY-ESO-1(ESO)和人类白细胞抗原变体HLA-A*0201(A2)为模型,预测了41种亲和力最高的、与A2结合的8-11聚体肽,并评估了它们在A2转基因小鼠以及接种ESO的黑色素瘤患者外周血单个核细胞上的结合、动力学复合物稳定性和免疫原性。我们发现,其中19种肽与A2紧密结合,其中10种形成了稳定的A2-肽复合物,并在A2转基因小鼠中诱导了CD8 T细胞。然而,这些肽中只有5种在人类中诱导了同源T细胞;这些肽表现出强结合力和复合物稳定性,并且含有多个大的疏水和芳香族氨基酸。这些结果无法通过算法预测,为改进T细胞表位识别提供了新线索。总之,我们的研究结果表明,在人类中,只有一小部分预测的与A2结合的ESO肽具有免疫原性,即那些具有高肽结合强度和复合物稳定性的肽。这一观察结果凸显了改进肽免疫原性预测的必要性。

相似文献

引用本文的文献

7
Applying artificial intelligence for cancer immunotherapy.将人工智能应用于癌症免疫治疗。
Acta Pharm Sin B. 2021 Nov;11(11):3393-3405. doi: 10.1016/j.apsb.2021.02.007. Epub 2021 Feb 11.
8
T Cell Epitope Prediction and Its Application to Immunotherapy.T 细胞表位预测及其在免疫治疗中的应用。
Front Immunol. 2021 Sep 15;12:712488. doi: 10.3389/fimmu.2021.712488. eCollection 2021.

本文引用的文献

2
Neoantigens encoded in the cancer genome.肿瘤基因组编码的新抗原。
Curr Opin Immunol. 2016 Aug;41:98-103. doi: 10.1016/j.coi.2016.07.005. Epub 2016 Aug 9.
4
Mass spectrometry-based antigen discovery for cancer immunotherapy.基于质谱的癌症免疫治疗抗原发现。
Curr Opin Immunol. 2016 Aug;41:9-17. doi: 10.1016/j.coi.2016.04.005. Epub 2016 May 4.
7
AIRE expands: new roles in immune tolerance and beyond.AIRE的扩展:免疫耐受及其他方面的新作用。
Nat Rev Immunol. 2016 Apr;16(4):247-58. doi: 10.1038/nri.2016.9. Epub 2016 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验