Suppr超能文献

一种基于症状的新型冠状病毒肺炎诊断规则。

A Symptom-Based Rule for Diagnosis of COVID-19.

作者信息

Smith David S, Richey Elizabeth A, Brunetto Wendy L

机构信息

Yale Health Center, Yale University, 55 Lock Street, New Haven, CT 06511 USA.

出版信息

SN Compr Clin Med. 2020;2(11):1947-1954. doi: 10.1007/s42399-020-00603-7. Epub 2020 Oct 24.

Abstract

SARS-CoV-19 PCR testing has a turn-around time that makes it impractical for real-time decision-making, and current point-of-care tests have limited sensitivity, with frequent false negatives. The study objective was to develop a clinical prediction rule to use with a point-of-care test to diagnose COVID-19 in symptomatic outpatients. A standardized clinical questionnaire was administered prior to SARS-CoV-2 PCR testing. Data was extracted by a physician blinded to the result status. Individual symptoms were combined into 326 unique clinical phenotypes. Multivariable logistic regression was used to identify independent predictors of COVID-19, from which a weighted clinical prediction rule was developed, to yield stratified likelihood ratios for varying scores. A retrospective cohort of 120 SARS-CoV-2-positive cases and 120 SARS-CoV-2-negative matched controls among symptomatic outpatients in a Connecticut HMO was used for rule development. A temporally distinct cohort of 40 cases was identified for validation of the rule. Clinical phenotypes independently associated with COVID-19 by multivariable logistic regression include loss of taste or smell (olfactory phenotype, 2 points) and fever and cough (febrile respiratory phenotype, 1 point). Wheeze or chest tightness (reactive airways phenotype, - 1 point) predicted non-COVID-19 respiratory viral infection. The AUC of the model was 0.736 (0.674-0.798). Application of a weighted C19 rule yielded likelihood ratios for COVID-19 diagnosis for varying scores ranging from LR 15.0 for 3 points to LR 0.1 for - 1 point. Using a Bayesian diagnostic approach, combining community prevalence with the evidence-based C19 rule to adjust pretest probability, clinicians can apply a point of care test with limited sensitivity across a range of clinical scenarios to differentiate COVID-19 infection from influenza and respiratory viral infection.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)聚合酶链反应(PCR)检测的周转时间使其无法用于实时决策,而且目前的即时检测敏感性有限,经常出现假阴性。本研究的目的是制定一项临床预测规则,用于即时检测,以诊断有症状门诊患者的新型冠状病毒肺炎(COVID-19)。在进行SARS-CoV-2 PCR检测之前,先进行一份标准化临床问卷的调查。由对结果状态不知情的医生提取数据。将个体症状合并为326种独特的临床表型。采用多变量逻辑回归来确定COVID-19的独立预测因素,并据此制定加权临床预测规则,得出不同分数的分层似然比。在康涅狄格州一个健康维护组织(HMO)的有症状门诊患者中,选取120例SARS-CoV-2阳性病例和120例配对的SARS-CoV-2阴性对照组成回顾性队列,用于规则制定。确定了一个40例的时间上不同的队列用于规则验证。通过多变量逻辑回归与COVID-19独立相关的临床表型包括味觉或嗅觉丧失(嗅觉表型,2分)以及发热和咳嗽(发热性呼吸道表型,1分)。喘息或胸闷(反应性气道表型,-1分)预测非COVID-19呼吸道病毒感染。该模型的曲线下面积(AUC)为0.736(0.674 - 0.798)。应用加权的C19规则得出不同分数的COVID-19诊断似然比,范围从3分的LR 15.0到-1分的LR 0.1。使用贝叶斯诊断方法,将社区患病率与基于证据的C19规则相结合以调整验前概率,临床医生可以在一系列临床场景中应用敏感性有限的即时检测,以区分COVID-19感染与流感和呼吸道病毒感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/595b/7584484/028b51a3df61/42399_2020_603_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验