Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA.
American Association for Cancer Research, Washington, DC, USA.
Arch Toxicol. 2021 Jan;95(1):311-319. doi: 10.1007/s00204-020-02901-4. Epub 2020 Nov 2.
Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT24) and slow (NAT25B or NAT27B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT24, NAT25B, or NAT27B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT24 versus NAT25B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.
暴露于烟草烟雾和室内空气中的烷基亚硝胺与膀胱癌风险相关。遗传因素会显著影响芳基胺致癌物的代谢和暴露导致的毒理学后果。我们利用核苷酸切除修复(NER)缺陷的永生化人成纤维细胞来研究人 N-乙酰转移酶 1(NAT1)、CYP1A2 以及常见的快乙酰化(NAT24)和慢乙酰化(NAT25B 或 NAT27B)乙酰化人 N-乙酰转移酶 2(NAT2)单倍型对环境芳基胺和烷基亚硝胺代谢的影响。我们构建了 SV40 转化的人成纤维细胞,其稳定表达人 NAT2 等位基因(NAT24、NAT25B 或 NAT27B)和人 CYP1A2。人 NAT1 和 NAT2 的表观动力学常数是通过在酵母中重组表达人 NAT1 和 NAT2 来测定的,用于测定芳基胺联苯胺、4-氨基联苯(ABP)和 2-氨基芴(2-AF)以及烷基亚硝胺 2,5-二甲基苯胺(DMA)、3,4-DMA、3,5-DMA、2-6-DMA 和 3-乙基苯胺(EA)的动力学常数,与原型 NAT1 选择性底物对氨基苯甲酸和 NAT2 选择性底物磺胺甲噁唑的动力学常数进行了比较。联苯胺、3,4-DMA 和 2-AF 是优选的人 NAT1 底物,而 3,5-DMA、2,5-DMA、3-EA 和 ABP 是优选的人 NAT2 底物。重组人 NAT1 或 NAT2 均不能催化 2,6-DMA 的 N-乙酰化。在烷基亚硝胺中,稳定表达 NAT24 的人成纤维细胞中 3,5-DMA 的 N-乙酰化明显高于 NAT25B 和 NAT2*7B。结果为 NAT2 乙酰化酶多态性(在竞争的 NAT1 和 CYP1A2 催化的 N-乙酰化和 N-羟化作用存在的情况下)在假定的烷基亚硝胺致癌物代谢中的作用提供了重要的见解。两种与膀胱癌相关的烷基亚硝胺(3-EA 和 3,5-DMA)的 N-乙酰化受 NAT2 乙酰化酶多态性修饰。