Department of Emergency Medicine and Toxicology, Oregon Health and Science University, Portland, Oregon, USA.
Department of Emergency Medicine, Columbia University Medical Cernter, New York, New York, USA.
Ther Hypothermia Temp Manag. 2021 Dec;11(4):223-229. doi: 10.1089/ther.2020.0036. Epub 2020 Nov 2.
Emergent modification of a patient's body temperature is crucial in certain disease or injury states. Advanced targeted temperature management techniques such as central venous catheter devices are not universally available, however, virtually all medical centers have access to intravenous fluids. This study approximates the change in body temperature for a given volume of room temperature, chilled, or heated isotonic crystalloid bolus. Using thermodynamic principles, a mathematical model was created to approximate change in body core temperature in response to a given volume and temperature of intravenous fluid. The model assumes rapid fluid infusion and the previously published specific heat capacity of the human body of 3.47 J/kg · °C. Values were calculated under conditions of varying body temperatures from profound hypothermia to hyperthermia (18°C-45°C). Various crystalloid temperatures representing iced, room temperature, and warmed (4°C, 20°C, 42°C) were used in the calculations. Each 30 mL/kg dose of 20°C crystalloid is expected to cool a hyperthermic (38°C-45°C) patient by 0.6°C-0.9°C. Each 30 mL/kg dose of 4°C crystalloid is expected to cool a hyperthermic (38°C-45°C) patient by 1.2°C-1.4°C. Each dose of 42°C crystalloid is expected to warm a hypothermic patient by 0.2°C-0.8°C. Using the results in this study, clinicians may roughly estimate the effect of temperature management with varying doses of intravenous fluids and thus assess the benefits of this technique. Risk should be evaluated based on inevitable coadministered volume and electrolytes. Individuals with volume-sensitive conditions such as heart, liver, or kidney failure deserve particular attention. Based on a mathematical model, typical expected core temperature change is about 0.2°C-1.4°C per 30 mL/kg crystalloid bolus, depending on patient and fluid temperature.
在某些疾病或损伤状态下,对患者体温进行紧急调节至关重要。然而,并非所有医疗中心都普遍配备有先进的靶向体温管理技术,如中心静脉导管设备,但几乎所有医疗中心都可以获得静脉输液。本研究旨在估算一定体积的室温、冷藏或加热等渗晶体液输注后患者体温的变化。我们利用热力学原理,创建了一个数学模型来估算患者核心体温在接受特定体积和温度的静脉输液后的变化。该模型假设快速输液,且人体比热为 3.47 J/kg·°C,这是之前发表的数值。在从重度低体温到高热(18°C-45°C)的不同体温条件下进行了计算。在计算中使用了不同的晶体液温度,代表了冰、室温、和加热(4°C、20°C、42°C)。每 30ml/kg 的 20°C 晶体液预计会使体温高于正常范围(38°C-45°C)的患者降低 0.6°C-0.9°C。每 30ml/kg 的 4°C 晶体液预计会使体温高于正常范围(38°C-45°C)的患者降低 1.2°C-1.4°C。每 30ml/kg 的 42°C 晶体液预计会使体温低于正常范围(38°C-45°C)的患者升高 0.2°C-0.8°C。使用本研究中的结果,临床医生可以大致估算不同剂量静脉输液对体温管理的影响,从而评估该技术的获益。应根据不可避免的共同给予的容量和电解质来评估风险。对于有心、肝、肾等容量敏感情况的个体,应给予特别关注。基于数学模型,典型的核心温度预期变化约为每 30ml/kg 晶体液输注 0.2°C-1.4°C,具体取决于患者和液体温度。