Suppr超能文献

卡波林纳马形态特征的主成分分析。

Principal components for morphometric traits in Campolina horses.

机构信息

Escola de Medicina e Veterinária e Zootecnia, UFBA Universidade Federal da Bahia, Salvador, Brazil.

Departamento de Zootecnia, Faculdade de Ciencias Agrarias e Veterinarias, UNESP Universidade Estadual Paulista Julio de Mesquita Filho, Jaboticabal, Brazil.

出版信息

J Anim Breed Genet. 2021 Mar;138(2):179-187. doi: 10.1111/jbg.12521. Epub 2020 Nov 2.

Abstract

Principal component analysis (PCA) was applied to evaluate the genetic variability and relationship between 15 morphometric traits in 91,483 Campolina horses, as well as to propose an index based on an aggregate genotype that promotes a particular selection objective. PCA was applied to the genetic (co)variance matrix among variables. After calculation of the principal components, the breeding values were estimated to obtain an index related to the component that explained most of the variation. The first principal component (PC1) accounted for 97.8% of the total additive genetic variance of the traits. PC1 contrasted animals in terms of body size (wither, back and croup heights, body length, and thoracic girth). PC1 traits showed higher heritabilities and positive and high genetic correlations. An index was obtained (HPC1) with the combination of the breeding values of different traits from PC1 which permitted the use of this index as an aggregate genotype to identify the best animals for selection. The second principal component (PC2) was much smaller and grouped traits related to head and neck morphometry, among others. These traits are commonly used for breed qualification, a fact explaining the small variation in this component. An evaluation of the effect of HPC1 on withers height in two-trait analysis was also made which provided positive genetic correlations of moderate to high magnitude (0.73-0.86), indicating that selection for this trait (important in Campolina horses) is accounted for in the index. The use of HCP1 could be considered as an important alternative to selection since it does not consider a single trait but rather a set of variables that capture body proportions.

摘要

主成分分析(PCA)用于评估 91483 匹坎波林纳马的 15 个形态特征的遗传变异和关系,并提出基于综合基因型的指数,以促进特定的选择目标。PCA 应用于变量之间的遗传(协)方差矩阵。在计算主成分后,估计了育种值,以获得与解释大部分变异的成分相关的指数。第一主成分(PC1)占性状总加性遗传方差的 97.8%。PC1 根据体型(肩、背和臀部高度、体长和胸围)来对比动物。PC1 性状表现出较高的遗传力和正的、高的遗传相关。获得了一个指数(HPC1),该指数结合了 PC1 中不同性状的育种值,允许使用该指数作为综合基因型来识别最适合选择的动物。第二主成分(PC2)要小得多,它将与头部和颈部形态有关的特征分组在一起,等等。这些特征通常用于品种资格鉴定,这一事实解释了该成分中变异较小的原因。还对 HPC1 对两性状分析中肩高的影响进行了评估,提供了中等到高强度的正遗传相关(0.73-0.86),表明该性状(在坎波林纳马中很重要)的选择在指数中得到了考虑。使用 HCP1 可以被认为是选择的一个重要替代方案,因为它不考虑单个特征,而是考虑一组捕获身体比例的变量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验