Suppr超能文献

原子吸附与嵌入多层石墨烯的热力学偏好

Thermodynamic Preference for Atom Adsorption on versus Intercalation into Multilayer Graphene.

作者信息

Li Wei, Huang Li, Tringides Michael C, Evans James W, Han Yong

机构信息

Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States.

出版信息

J Phys Chem Lett. 2020 Nov 19;11(22):9725-9730. doi: 10.1021/acs.jpclett.0c02887. Epub 2020 Nov 2.

Abstract

The thermodynamic preference of a foreign atom for adsorption on versus intercalation into a graphitic surface is of fundamental and widespread interest. From an exhaustive first-principles density functional theory investigation for 38 typical elements over the periodic table, we reveal a quasilinear correlation between the Shannon effective ionic radius and the chemical-potential difference for a single atom from adsorption to intercalation at multilayer graphene surfaces. A critical Shannon radius is found to be around 0.10 nm, below (above) which intercalation (adsorption) is more favorable for elements with ionic-like bonding after intercalation. Single atoms with van der Waals-biased bonding show some deviation from the linear relationship, while single atoms for the elements with covalent-like bonding do not favor intercalation relative to adsorption. An energy decomposition analysis indicates that the chemical-potential difference determining the thermodynamic preference of a foreign atom for adsorption versus intercalation results from the competition between the electronic and elastic strain effects.

摘要

外来原子吸附在石墨表面与嵌入石墨表面的热力学偏好具有根本且广泛的意义。通过对元素周期表中38种典型元素进行详尽的第一性原理密度泛函理论研究,我们揭示了在多层石墨烯表面,香农有效离子半径与单个原子从吸附到嵌入的化学势差之间存在准线性关系。发现一个临界香农半径约为0.10纳米,低于(高于)此半径时,对于嵌入后具有类离子键的元素,嵌入(吸附)更为有利。具有范德华偏向键的单个原子显示出与线性关系有一些偏差,而具有类共价键的元素的单个原子相对于吸附而言不倾向于嵌入。能量分解分析表明,决定外来原子吸附与嵌入热力学偏好的化学势差源于电子和弹性应变效应之间的竞争。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验