Barbot Antoine, Tan Haijie, Power Maura, Seichepine Florent, Yang Guang-Zhong
Hamlyn Centre, Imperial College London, London, UK.
Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.
Sci Robot. 2019 Sep 25;4(34). doi: 10.1126/scirobotics.aax8336.
Because minimally invasive surgery is increasingly used to target small lesions, demand is growing for miniaturized tools-such as microcatheters, articulated microforceps, or tweezers-that incorporate sensing and actuation for precision surgery. Although existing microfabrication techniques have addressed the construction of these devices, accurate integration and functionalization of chemical and physical sensors represent major challenges. This paper presents a microrobotic platform for the functionalization of fibers of diameters from 140 to 830 micrometers, with a patterning precision of 5 micrometers and an orientation error below 0.4°. To achieve this, we developed two 2 millimeter-by-3 millimeter, 200-micrometer-thick microrobots to align floating electronic circuits on a fiber during a wet transfer process. The position and orientation of the microrobots were controlled at the air/water interface by a permanent magnet. The stiffness of the position controlled was 0.2 newton millimeter, leading to an average force of 0.5 newton. The nonhomogeneous magnetic field of the magnet, associated with different preferred magnetization directions recorded in the microrobots, allowed the distance between the two microrobots to be precisely controlled. This extra degree of freedom was used to control the microrobot pair as a tweezer to grab and release floating electronic patterns, whereas the others were used to align the pattern position and orientation with the fiber. A model of this control, as well as the microrobots' interaction through surface tension, is proposed. Detailed performance validation is provided, and various exemplar sensor embodiments on a 200-micrometer-diameter fiber and three-dimensional devices are demonstrated.
由于微创手术越来越多地用于针对小病变,对微型化工具(如微导管、关节式微型镊子或镊子)的需求不断增长,这些工具集成了传感和驱动功能以实现精确手术。尽管现有的微制造技术已经解决了这些设备的构造问题,但化学和物理传感器的精确集成和功能化仍然是重大挑战。本文提出了一种用于直径为140至830微米的纤维功能化的微型机器人平台,其图案化精度为5微米,取向误差低于0.4°。为了实现这一目标,我们开发了两个2毫米×3毫米、200微米厚的微型机器人,以便在湿法转移过程中在纤维上对齐浮动电子电路。微型机器人的位置和取向通过永磁体在空气/水界面进行控制。位置控制的刚度为0.2牛顿/毫米,平均力为0.5牛顿。磁体的非均匀磁场与微型机器人中记录的不同优先磁化方向相关联,使得两个微型机器人之间的距离能够被精确控制。这种额外的自由度被用于将微型机器人对作为镊子来抓取和释放浮动电子图案,而其他自由度则用于将图案的位置和取向与纤维对齐。提出了这种控制的模型以及微型机器人通过表面张力的相互作用。提供了详细的性能验证,并展示了直径为200微米的纤维上的各种示例性传感器实施例和三维设备。
Sci Robot. 2019-9-25
Micromachines (Basel). 2018-3-14
Micromachines (Basel). 2021-12-17
Adv Mater. 2020-10
Proc Natl Acad Sci U S A. 2020-2-3
Polymers (Basel). 2022-12-15
Lab Chip. 2023-3-1
Sensors (Basel). 2025-5-10
Front Chem. 2025-4-10
Natl Sci Rev. 2024-4-4
Micromachines (Basel). 2023-11-29
Chem Rev. 2023-9-27
Nat Commun. 2023-3-7
Science. 2022-11-25