文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于纤维功能化的浮动磁性微型机器人。

Floating magnetic microrobots for fiber functionalization.

作者信息

Barbot Antoine, Tan Haijie, Power Maura, Seichepine Florent, Yang Guang-Zhong

机构信息

Hamlyn Centre, Imperial College London, London, UK.

Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Sci Robot. 2019 Sep 25;4(34). doi: 10.1126/scirobotics.aax8336.


DOI:10.1126/scirobotics.aax8336
PMID:33137778
Abstract

Because minimally invasive surgery is increasingly used to target small lesions, demand is growing for miniaturized tools-such as microcatheters, articulated microforceps, or tweezers-that incorporate sensing and actuation for precision surgery. Although existing microfabrication techniques have addressed the construction of these devices, accurate integration and functionalization of chemical and physical sensors represent major challenges. This paper presents a microrobotic platform for the functionalization of fibers of diameters from 140 to 830 micrometers, with a patterning precision of 5 micrometers and an orientation error below 0.4°. To achieve this, we developed two 2 millimeter-by-3 millimeter, 200-micrometer-thick microrobots to align floating electronic circuits on a fiber during a wet transfer process. The position and orientation of the microrobots were controlled at the air/water interface by a permanent magnet. The stiffness of the position controlled was 0.2 newton millimeter, leading to an average force of 0.5 newton. The nonhomogeneous magnetic field of the magnet, associated with different preferred magnetization directions recorded in the microrobots, allowed the distance between the two microrobots to be precisely controlled. This extra degree of freedom was used to control the microrobot pair as a tweezer to grab and release floating electronic patterns, whereas the others were used to align the pattern position and orientation with the fiber. A model of this control, as well as the microrobots' interaction through surface tension, is proposed. Detailed performance validation is provided, and various exemplar sensor embodiments on a 200-micrometer-diameter fiber and three-dimensional devices are demonstrated.

摘要

由于微创手术越来越多地用于针对小病变,对微型化工具(如微导管、关节式微型镊子或镊子)的需求不断增长,这些工具集成了传感和驱动功能以实现精确手术。尽管现有的微制造技术已经解决了这些设备的构造问题,但化学和物理传感器的精确集成和功能化仍然是重大挑战。本文提出了一种用于直径为140至830微米的纤维功能化的微型机器人平台,其图案化精度为5微米,取向误差低于0.4°。为了实现这一目标,我们开发了两个2毫米×3毫米、200微米厚的微型机器人,以便在湿法转移过程中在纤维上对齐浮动电子电路。微型机器人的位置和取向通过永磁体在空气/水界面进行控制。位置控制的刚度为0.2牛顿/毫米,平均力为0.5牛顿。磁体的非均匀磁场与微型机器人中记录的不同优先磁化方向相关联,使得两个微型机器人之间的距离能够被精确控制。这种额外的自由度被用于将微型机器人对作为镊子来抓取和释放浮动电子图案,而其他自由度则用于将图案的位置和取向与纤维对齐。提出了这种控制的模型以及微型机器人通过表面张力的相互作用。提供了详细的性能验证,并展示了直径为200微米的纤维上的各种示例性传感器实施例和三维设备。

相似文献

[1]
Floating magnetic microrobots for fiber functionalization.

Sci Robot. 2019-9-25

[2]
Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions.

Sci Robot. 2019-4-24

[3]
Micro-UFO (Untethered Floating Object): A Highly Accurate Microrobot Manipulation Technique.

Micromachines (Basel). 2018-3-14

[4]
Vision-assisted micromanipulation using closed-loop actuation of multiple microrobots.

Robotics Biomim. 2017

[5]
Development of Cell-Carrying Magnetic Microrobots with Bioactive Nanostructured Titanate Surface for Enhanced Cell Adhesion.

Micromachines (Basel). 2021-12-17

[6]
Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots.

Adv Mater. 2020-10

[7]
Development of Magnet-Driven and Image-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy.

Small. 2020-10

[8]
Acoustically powered surface-slipping mobile microrobots.

Proc Natl Acad Sci U S A. 2020-2-3

[9]
Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography.

Polymers (Basel). 2022-12-15

[10]
A review on microrobots driven by optical and magnetic fields.

Lab Chip. 2023-3-1

引用本文的文献

[1]
Hybrid Mode Sensor Fusion for Accurate Robot Positioning.

Sensors (Basel). 2025-5-10

[2]
Magnetically driven biohybrid blood hydrogel fibres for personalized intracranial tumour therapy under fluoroscopic tracking.

Nat Biomed Eng. 2025-5-1

[3]
Micro-nano robots for treatment of eye diseases.

Front Chem. 2025-4-10

[4]
Lateral nanoarchitectonics from nano to life: ongoing challenges in interfacial chemical science.

Chem Sci. 2024-10-28

[5]
Sub-Nanogram Resolution Measurement of Inertial Mass and Density Using Magnetic-Field-Guided Bubble Microthruster.

Adv Sci (Weinh). 2024-8

[6]
Endovascular embolization by a magnetic microfiberbot.

Natl Sci Rev. 2024-4-4

[7]
Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics.

Micromachines (Basel). 2023-11-29

[8]
Mechanically-Guided 3D Assembly for Architected Flexible Electronics.

Chem Rev. 2023-9-27

[9]
Self-folding soft-robotic chains with reconfigurable shapes and functionalities.

Nat Commun. 2023-3-7

[10]
Reflow transfer for conformal three-dimensional microprinting.

Science. 2022-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索