Physics Department, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain.
Instituto de Investigación Para la Gestión Integrada de Zonas Costeras, Universitat Politècnica de València, Paranimf 1, Grao de Gandia, 46730 València, Spain.
Sensors (Basel). 2020 Oct 29;20(21):6148. doi: 10.3390/s20216148.
In this work, we numerically investigate the diffraction management of longitudinal elastic waves propagating in a two-dimensional metallic phononic crystal. We demonstrate that this structure acts as an "ultrasonic lens", providing self-collimation or focusing effect at a certain distance from the crystal output. We implement this directional propagation in the design of a coupling device capable to control the directivity or focusing of ultrasonic waves propagation inside a target object. These effects are robust over a broad frequency band and are preserved in the propagation through a coupling gel between the "ultrasonic lens" and the solid target. These results may find interesting industrial and medical applications, where the localization of the ultrasonic waves may be required at certain positions embedded in the object under study. An application example for non-destructive testing with improved results, after using the ultrasonic lens, is discussed as a proof of concept for the novelty and applicability of our numerical simulation study.
在这项工作中,我们通过数值模拟研究了二维金属声子晶体中弹性纵波的衍射管理。我们证明了这种结构充当了“超声透镜”的作用,在距离晶体输出一定距离处提供自准直或聚焦效果。我们在设计一种耦合装置时实现了这种定向传播,该装置能够控制目标物体内部超声波传播的指向性或聚焦。这些效果在较宽的频带内是稳健的,并且在“超声透镜”和固体目标之间的耦合凝胶中传播时得以保留。这些结果可能在工业和医学领域有有趣的应用,在这些领域中,可能需要在研究对象中的某些位置定位超声波。我们讨论了一个用于无损检测的应用示例,使用超声透镜后,结果得到了改善,这证明了我们的数值模拟研究的新颖性和适用性。