Centro Universitario de los Lagos, Universidad de Guadalajara, Jalisco 47460, Mexico.
Complex Systems Group & GISC, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain and Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Madrid, Spain.
Chaos. 2020 Oct;30(10):103119. doi: 10.1063/5.0020419.
The path toward the synchronization of an ensemble of dynamical units goes through a series of transitions determined by the dynamics and the structure of the connections network. In some systems on the verge of complete synchronization, intermittent synchronization, a time-dependent state where full synchronization alternates with non-synchronized periods, has been observed. This phenomenon has been recently considered to have functional relevance in neuronal ensembles and other networked biological systems close to criticality. We characterize the intermittent state as a function of the network topology to show that the different structures can encourage or inhibit the appearance of early signs of intermittency. In particular, we study the local intermittency and show how the nodes incorporate to intermittency in hierarchical order, which can provide information about the node topological role even when the structure is unknown.
走向动力单元集合同步的路径需要经历一系列由动力学和连接网络结构决定的转变。在一些接近完全同步的系统中,间歇性同步已被观察到,这是一种时变状态,其中完全同步与非同步周期交替出现。这种现象最近被认为在接近临界状态的神经元集合和其他联网生物系统中具有功能相关性。我们将间歇性状态作为网络拓扑的函数进行特征描述,以表明不同的结构可以鼓励或抑制间歇性早期迹象的出现。特别是,我们研究了局部间歇性,并展示了节点如何按层次顺序纳入间歇性,即使结构未知,这也可以提供有关节点拓扑角色的信息。