Suppr超能文献

使用加权标签传播检测有符号和无符号社交网络中的社区结构。

Detecting community structure in signed and unsigned social networks by using weighted label propagation.

机构信息

Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin 3419915195, Iran.

Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran 1591634311, Iran.

出版信息

Chaos. 2020 Oct;30(10):103118. doi: 10.1063/1.5144139.

Abstract

Detecting community structure is one of the most important problems in analyzing complex networks such as technological, informational, biological, and social networks and has great importance in understanding the operation and organization of these networks. One of the significant properties of social networks is the communication intensity between the users, which has not received much attention so far. Most of the proposed methods for detecting community structure in social networks have only considered communications between users. In this paper, using MinHash and label propagation, an algorithm called weighted label propagation algorithm (WLPA) has been proposed to detect community structure in signed and unsigned social networks. WLPA takes into account the intensity of communications in addition to the communications. In WLPA, first, the similarity of all adjacent nodes is estimated by using MinHash. Then, each edge is assigned a weight equal to the estimated similarity of its end nodes. The weights assigned to the edges somehow indicate the intensity of communication between users. Finally, the community structure of the network is determined through the weighted label propagation. Experiments on the benchmark networks indicate that WLPA is efficient and effective for detecting community structure in both signed and unsigned social networks.

摘要

检测社区结构是分析技术、信息、生物和社交网络等复杂网络的最重要问题之一,对于理解这些网络的运作和组织具有重要意义。社交网络的一个重要性质是用户之间的通信强度,到目前为止,这方面还没有得到太多关注。大多数用于检测社交网络中社区结构的方法仅考虑了用户之间的通信。在本文中,我们使用 MinHash 和标签传播,提出了一种称为加权标签传播算法(WLPA)的算法,用于检测有向和无向社交网络中的社区结构。WLPA 除了考虑通信之外,还考虑了通信的强度。在 WLPA 中,首先使用 MinHash 估计所有相邻节点的相似度。然后,为每条边分配一个等于其端点估计相似度的权重。分配给边的权重在某种程度上表明了用户之间的通信强度。最后,通过加权标签传播确定网络的社区结构。在基准网络上的实验表明,WLPA 对于检测有向和无向社交网络中的社区结构是高效和有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验