Suppr超能文献

使用三度传播对节点进行标记。

Labeling nodes using three degrees of propagation.

机构信息

Department of Computer Science, Stanford University, Palo Alto, CA, USA.

出版信息

PLoS One. 2012;7(12):e51947. doi: 10.1371/journal.pone.0051947. Epub 2012 Dec 28.

Abstract

The properties (or labels) of nodes in networks can often be predicted based on their proximity and their connections to other labeled nodes. So-called "label propagation algorithms" predict the labels of unlabeled nodes by propagating information about local label density iteratively through the network. These algorithms are fast, simple and scale to large networks but nonetheless regularly perform better than slower and much more complex algorithms on benchmark problems. We show here, however, that these algorithms have an intrinsic limitation that prevents them from adapting to some common patterns of network node labeling; we introduce a new algorithm, 3Prop, that retains all their advantages but is much more adaptive. As we show, 3Prop performs very well on node labeling problems ill-suited to label propagation, including predicting gene function in protein and genetic interaction networks and gender in friendship networks, and also performs slightly better on problems already well-suited to label propagation such as labeling blogs and patents based on their citation networks. 3Prop gains its adaptability by assigning separate weights to label information from different steps of the propagation. Surprisingly, we found that for many networks, the third iteration of label propagation receives a negative weight.

摘要

网络中节点的属性(或标签)通常可以根据它们与其他已标记节点的接近度和连接来预测。所谓的“标签传播算法”通过在网络中迭代地传播有关局部标签密度的信息来预测未标记节点的标签。这些算法快速、简单且可扩展到大型网络,但在基准问题上,它们的性能通常优于较慢且复杂得多的算法。然而,我们在这里表明,这些算法存在内在的限制,使其无法适应网络节点标记的一些常见模式;我们引入了一种新的算法 3Prop,它保留了所有的优点,但适应性更强。正如我们所展示的,3Prop 在不适合标签传播的节点标记问题上表现非常出色,包括预测蛋白质和遗传相互作用网络中的基因功能以及友谊网络中的性别,并且在已经非常适合标签传播的问题上也表现得稍好,例如根据引文网络对博客和专利进行标记。3Prop 通过为传播的不同步骤分配单独的标签信息权重来获得适应性。令人惊讶的是,我们发现对于许多网络,标签传播的第三轮迭代会收到负权重。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5934/3532359/a14c74f3f877/pone.0051947.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验