加拿大放射学家协会关于医学影像去识别化的白皮书:第 1 部分,一般原则。
Canadian Association of Radiologists White Paper on De-Identification of Medical Imaging: Part 1, General Principles.
机构信息
Department of Radiology, 8166University of British Columbia, Vancouver, British Columbia, Canada.
SapienML Corp, Vancouver, British Columbia, Canada.
出版信息
Can Assoc Radiol J. 2021 Feb;72(1):13-24. doi: 10.1177/0846537120967349. Epub 2020 Nov 3.
The application of big data, radiomics, machine learning, and artificial intelligence (AI) algorithms in radiology requires access to large data sets containing personal health information. Because machine learning projects often require collaboration between different sites or data transfer to a third party, precautions are required to safeguard patient privacy. Safety measures are required to prevent inadvertent access to and transfer of identifiable information. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI Ethical and Legal standing committee with the mandate to guide the medical imaging community in terms of best practices in data management, access to health care data, de-identification, and accountability practices. Part 1 of this article will inform CAR members on principles of de-identification, pseudonymization, encryption, direct and indirect identifiers, k-anonymization, risks of reidentification, implementations, data set release models, and validation of AI algorithms, with a view to developing appropriate standards to safeguard patient information effectively.
大数据、放射组学、机器学习和人工智能 (AI) 算法在放射学中的应用需要访问包含个人健康信息的大型数据集。由于机器学习项目通常需要不同站点之间的协作或向第三方传输数据,因此需要采取预防措施来保护患者隐私。需要采取安全措施来防止意外访问和传输可识别信息。加拿大放射学家协会 (CAR) 是放射学的国家声音,致力于在以患者为中心的成像、终身学习和研究方面推动最高标准。CAR 成立了一个 AI 伦理和法律常务委员会,负责指导医学成像社区在数据管理、医疗保健数据访问、去识别和问责制实践方面的最佳做法。本文第一部分将向 CAR 成员介绍去识别、假名化、加密、直接和间接标识符、k-匿名化、重新识别风险、实施、数据集发布模型和 AI 算法验证的原则,以期制定适当的标准来有效保护患者信息。