Department of Radiology, 8166University of British Columbia, Vancouver, British Columbia, Canada.
SapienML Corp, Vancouver, British Columbia, Canada.
Can Assoc Radiol J. 2021 Feb;72(1):25-34. doi: 10.1177/0846537120967345. Epub 2020 Nov 3.
The application of big data, radiomics, machine learning, and artificial intelligence (AI) algorithms in radiology requires access to large data sets containing personal health information. Because machine learning projects often require collaboration between different sites or data transfer to a third party, precautions are required to safeguard patient privacy. Safety measures are required to prevent inadvertent access to and transfer of identifiable information. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI Ethical and Legal standing committee with the mandate to guide the medical imaging community in terms of best practices in data management, access to health care data, de-identification, and accountability practices. Part 2 of this article will inform CAR members on the practical aspects of medical imaging de-identification, strengths and limitations of de-identification approaches, list of de-identification software and tools available, and perspectives on future directions.
大数据、放射组学、机器学习和人工智能 (AI) 算法在放射学中的应用需要访问包含个人健康信息的大型数据集。由于机器学习项目通常需要不同站点之间的协作或向第三方传输数据,因此需要采取预防措施来保护患者隐私。需要采取安全措施来防止意外访问和传输可识别信息。加拿大放射学家协会 (CAR) 是放射学领域的国家声音,致力于在以患者为中心的成像、终身学习和研究方面推动最高标准。CAR 成立了一个人工智能伦理和法律常务委员会,负责指导医学成像界在数据管理、医疗保健数据访问、去识别化和问责制实践方面的最佳做法。本文的第 2 部分将向 CAR 成员介绍医学成像去识别化的实际方面、去识别化方法的优缺点、可用的去识别化软件和工具列表以及对未来方向的看法。