Deng Changjian, Gabriel Eric, Skinner Paige, Lee Sungsik, Barnes Pete, Ma Chunrong, Gim Jihyeon, Lau Miu Lun, Lee Eungje, Xiong Hui
Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States.
X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2020 Nov 18;12(46):51397-51408. doi: 10.1021/acsami.0c13850. Epub 2020 Nov 3.
Layered NaNiFeMnO cathode (NFM) is of great interest in sodium ion batteries because of its high theoretical capacity and utilization of abundant, low-cost, environmentally friendly raw materials. Nevertheless, there remains insufficient understanding on the concurrent local environment evolution in each transition metal (TM) that largely influences the reversibility of the cathode materials upon cycling. In this work, we investigate the reversibility of TM ions in layered NFMs with varying Fe contents and potential windows. Utilizing synchrotron X-ray absorption near-edge spectroscopy and extended X-ray absorption fine structure of precycled samples, the valence and bonding evolution of the TMs are elucidated. It is found that Mn is electrochemically inactive, as indicated by the insignificant change of Mn valence and the Mn-O bonding distance. Fe is electrochemically inactive after the first five cycles. The Ni redox couple contributes most of the charge compensation for NFMs. Ni redox is quite reversible in the cathodes with less Fe content. However, the Ni redox couple shows significant irreversibility with a high Fe content of 0.8. The electrochemical reversibility of the NFM cathode becomes increasingly enhanced with the decrease of either Fe content or with lower upper charge cutoff potential.
层状NaNiFeMnO正极(NFM)因其高理论容量以及对丰富、低成本、环境友好型原材料的利用,在钠离子电池领域备受关注。然而,对于每种过渡金属(TM)中同时发生的局部环境演变,人们仍缺乏足够的了解,而这种演变在很大程度上影响着正极材料在循环过程中的可逆性。在这项工作中,我们研究了不同铁含量和电位窗口的层状NFM中TM离子的可逆性。利用同步加速器X射线吸收近边光谱和预循环样品的扩展X射线吸收精细结构,阐明了TMs的价态和键合演变。研究发现,锰在电化学上是不活跃的,这表现为锰的价态和锰 - 氧键距变化不明显。在前五个循环之后,铁在电化学上变得不活跃。镍氧化还原对为NFMs贡献了大部分的电荷补偿。在铁含量较低的正极中,镍氧化还原具有相当的可逆性。然而,当铁含量高达0.8时,镍氧化还原对表现出显著的不可逆性。随着铁含量的降低或较高充电截止电位的降低,NFM正极的电化学可逆性会不断增强。