Saxena Samriddhi, Vasavan Hari Narayanan, Dagar Neha, Chinnathambi Karthik, Srihari Velaga, Das Asish Kumar, Gami Pratiksha, Deswal Sonia, Kumar Pradeep, Poswal Himanshu Kumar, Kumar Sunil
Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, India.
Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho, USA.
Battery Energy. 2025 Mar 22. doi: 10.1002/bte2.20240083.
This study systematically investigates an Mn-Fe-Ni pseudo-ternary system for Na(Mn-Fe-Ni)O cathodes, focusing on the effects of varying transition metal fractions on structural and electrochemical properties. X-ray diffraction reveals that increasing Mn content induces biphasic behavior. A higher Ni content reduces the parameter, while higher Mn and Fe concentrations expand the lattice. Average particle size increases with an increase in Mn content and Fe/Ni ratio. NaMnFeNiO delivers a high specific capacity of ~149 mAh g in the 2.0-4.0 V range. Galvanostatic charge-discharge and versus V curves suggest that a Ni/Fe ratio > 1 enhances specific capacity and lowers voltage polarization in the materials. NaMn-FeNiO demonstrated the best rate performance, exhibiting 85.7% capacity at 1C and 69.7% at 3C, compared to 0.1C, while biphasic NaMnFeNiO (MFN-512) excelled in cyclic stability, retaining 93% of capacity after 100 cycles. The performance of MFN-512 in a full cell configuration was studied with hard carbon as the anode, resulting in a specific capacity of ~92 mAh g and a nominal voltage of ~2.9 V at a 0.1C rate, demonstrating its potential in practical applications. Transmission electron microscopy confirmed the biphasic nature of MFN-512, with columnar growth of P2 and O3 phases. Electrochemical impedance spectroscopy revealed that better-performing samples have lower charge transfer resistance. Synchrotron XRD reveals reversible phase transformations in MFN-512, driven by its optimized transition metal ratios and phase fraction. This work outlines a systematic approach to optimizing low-cost, high-performance Mn-Fe-Ni layered oxides.
本研究系统地研究了用于Na(Mn-Fe-Ni)O阴极的Mn-Fe-Ni伪三元体系,重点关注不同过渡金属比例对结构和电化学性能的影响。X射线衍射表明,增加Mn含量会引发双相行为。较高的Ni含量会降低晶格参数,而较高的Mn和Fe浓度会使晶格膨胀。平均粒径随Mn含量和Fe/Ni比的增加而增大。NaMnFeNiO在2.0-4.0V范围内具有约149 mAh g的高比容量。恒电流充放电和电压与V曲线表明,Ni/Fe比>1可提高材料的比容量并降低电压极化。NaMn-FeNiO表现出最佳的倍率性能,与0.1C相比,在1C时容量为85.7%,在3C时为69.7%,而双相NaMnFeNiO (MFN-512)在循环稳定性方面表现出色,100次循环后保留93%的容量。以硬碳为阳极研究了MFN-512在全电池配置中的性能,在0.1C倍率下比容量约为92 mAh g,标称电压约为2.9V,证明了其在实际应用中的潜力。透射电子显微镜证实了MFN-512的双相性质,P2和O3相呈柱状生长。电化学阻抗谱表明,性能较好的样品具有较低的电荷转移电阻。同步辐射XRD揭示了MFN-512中由其优化的过渡金属比例和相分数驱动的可逆相变。这项工作概述了一种优化低成本、高性能Mn-Fe-Ni层状氧化物的系统方法。